1887

Abstract

Strain DCY45 was isolated from soil of a ginseng field in Pocheon Province, Korea. Strain DCY45 was Gram-negative, oxidase- and catalase-positive, motile and rod-shaped and produced yellow pigments on R2A agar. The organism grew optimally at 30 °C and at pH 7.0. The GC content of the genomic DNA was 65.4 mol%. The predominant respiratory quinone was Q-8. The major fatty acids were iso-C 9, iso-C and iso-C. Phylogenetic analysis based on the 16S rRNA gene sequence was used to determine the taxonomic position of strain DCY45, which is most closely related to species of the genus , with similarity levels of 96.0–98.4 %; DNA–DNA relatedness with related strains was lower than 60 %. Strain DCY45 differed significantly from related type strains in phenotypic characteristics. On the basis of these phenotypic, genotypic and chemotaxonomic studies, strain DCY45 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DCY45 (=KCTC 22620 =JCM 16126).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019422-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2935.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019422-0&mimeType=html&fmt=ahah

References

  1. An D. S., Lee H. G., Lee S. T., Im W. T. 2009; Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 59:691–694 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Bartholomew J. W., Finkelstein H. 1958; Relationship of cell wall straining to Gram differentiation. J Bacteriol 75:77–84
    [Google Scholar]
  4. De Clercq D., Van Trappen S., Cleenwerck I., Ceustermans A., Swings J., Coossemans J., Ryckeboer J. 2006; Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. Int J Syst Evol Microbiol 56:1755–1759 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  9. Im W. T., Lee S. T., Yokota A. 2004; Rhodanobacter fulvus sp. nov., a β -galactosidase-producing gammaproteobacterium. J Gen Appl Microbiol 50:143–147 [CrossRef]
    [Google Scholar]
  10. Kasana R. C., Salwan R., Dhar H., Dutt S., Gulati A. 2008; A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine. Curr Microbiol 57:503–507 [CrossRef]
    [Google Scholar]
  11. Kim M. K., Im W. T., Ohta H., Lee M., Lee S. T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Lee C. S., Kim K. K., Aslam Z., Lee S.-T. 2007; Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57:1775–1779 [CrossRef]
    [Google Scholar]
  15. Mergaert J., Cnockaert M. C., Swings J. 2002; Fulvimonas soli gen. nov., sp. nov., a γ -proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52:1285–1289 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Nalin R., Simonet P., Vogel T. M., Normand P. 1999; Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101: Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  22. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  23. Weon H. Y., Kim B. T., Hong S. B., Jeon Y. A., Kwon S. W., Go S. J., Koo B. S. 2007; Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 57:2810–2813 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019422-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019422-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error