1887

Abstract

A bacterial strain, designated BF-3, was isolated from phenol-contaminated soil and investigated using a polyphasic taxonomic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BF-3 formed a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus ; it showed highest sequence similarities to LMG 2370 (96.8 %), DSM 13191 (96.4 %), LMG 23579 (96.4 %), LMG 3475 (96.3 %), KCTC 12005 (96.1 %) and LMG 1253 (96.0 %). The major cellular fatty acids were C, C/C 7, C cyclo and summed feature 3 (C 7 and/or iso-C 2-OH). Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition and biochemical characteristics, strain BF-3 was clearly distinct from type strains of other recognized species of the genus and, as such, represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BF-3 (=CCTCC AB 209170 =DSM 22523).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019612-0
2011-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/255.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019612-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  2. Chang Y. H., Han J. I., Chun J., Lee K. C., Rhee M. S., Kim Y. B., Bae K. S. 2002; Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 52:377–381
    [Google Scholar]
  3. Chou J.-H., Sheu S.-Y., Lin K.-Y., Chen W.-M., Arun A. B., Young C.-C. 2007; Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus . Int J Syst Evol Microbiol 57:887–891 [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int J Syst Bacteriol 35443–453 [CrossRef]
    [Google Scholar]
  6. Etchebehere C., Errazquin M. I., Dabert P., Moletta R., Muxi L. 2001; Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 51:977–983 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Gumaelius L., Magnusson G., Pettersson B., Dalhammar G. 2001; Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51:999–1006 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  12. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  13. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  14. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov. a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446
    [Google Scholar]
  15. Rosselló-Mora R. 2006; DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In Molecular Identification, Systematics, and Population Structure of Prokaryotes pp 23–50 Edited by Stackebrandt E. Heidelberg: Springer;
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn Cold. Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology. pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  20. Tago Y., Yokota A. 2004; Comamonas badia sp. nov., a flocforming bacterium isolated from activated sludge. J Gen Appl Microbiol 50:243–248 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Ha D., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 37:52–59 [CrossRef]
    [Google Scholar]
  22. Tindall B. J., Rosselló-Mora R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [CrossRef]
    [Google Scholar]
  23. Wauters G., De Baere T., Willems A., Falsen E., Vaneechoutte M. 2003; Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena . Int J Syst Evol Microbiol 53:859–862 [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  25. Young C.-C., Chou J.-H., Arun A. B., Yen W.-S., Sheu S.-Y., Shen F.-T., Lai W.-A., Rekha P. D., Chen W.-M. 2008; Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 58:251–256 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019612-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019612-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error