1887

Abstract

Four rhizobial strains, designated CCBAU 85046, CCBAU 85051, CCBAU 85048 and CCBAU 85049, isolated from root nodules of grown in Tibet, China, were previously defined, using amplified 16S rRNA gene restriction analysis, as a novel group within the genus . To clarify their taxonomic position, these strains were further analysed and compared with reference strains of related bacteria using a polyphasic approach. The 16S rRNA gene analysis showed that the four isolates formed a distinct phylogenetic lineage in the genus . The isolates showed highest sequence similarity (97.8 %) to CCBAU 71042. Phenotypic and physiological tests, DNA–DNA hybridization, phylogenetic analyses of housekeeping genes , and and fatty acid profiles also indicated that these four strains constitute a novel group distinct from recognized species of the genus . Based on this evidence, strains CCBAU 85046, CCBAU 85051, CCBAU 85048 and CCBAU 85049 represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CCBAU 85046 (=LMG 25225 =HAMBI 3066) and its DNA G+C content is 59.52 mol% ( ). Strain CCBAU 85046 could form effective nodules on plant species and but not on its host of origin .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020156-0
2011-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/512.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020156-0&mimeType=html&fmt=ahah

References

  1. Chou Y. J., Elliott G. N., James E. K., Lin K. Y., Chou J. H., Sheu S. Y., Sheu D. S., Sprent J. I., Chen W. M. 2007; Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea . Int J Syst Evol Microbiol 57:577–581 [CrossRef]
    [Google Scholar]
  2. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; Quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Frank B. 1889; Über die Pilzsysymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346 (in German
    [Google Scholar]
  6. Gao J. L., Sun J. G., Li Y., Wang E. T., Chen W. X. 1994; Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Evol Microbiol 44:151–158
    [Google Scholar]
  7. Garcia L. C., Martinez-Molina E., Trujillo M. E. 2010; Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum . Int J Syst Evol Microbiol 60:331–337 [CrossRef]
    [Google Scholar]
  8. Garcia-Fraile P., Rivas R., Willems A., Peix A., Martens M., Martínez-Molina E., Mateos P. F., Velázquez E. 2007; Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba . Int J Syst Evol Microbiol 57:844–848 [CrossRef]
    [Google Scholar]
  9. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048 [CrossRef]
    [Google Scholar]
  10. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B. other authors 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Evol Microbiol 41:582–587
    [Google Scholar]
  11. Hou B. C., Wang E. T., Li Y., Jia R. Z., Chen W. F., Man C. X., Sui X. H., Chen W. X. 2009; Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57:69–81
    [Google Scholar]
  12. Hunter W. J., Kuykendall L. D., Manter D. K. 2007; Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460 [CrossRef]
    [Google Scholar]
  13. Hurek T., Wagner B., Reinhold-Hurek B. 1997; Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339
    [Google Scholar]
  14. Jensen M. A., Webster J. A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Laguerre G., Mavingui P., Allard M. R., Charnay M. P., Louvrier P., Mazurier S. I., Rigottier-Gois L., Amarger N. 1996; Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Peng G. X., Yuan Q. H., Li H. X., Zhang W., Tan Z. Y. 2008; Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . Int J Syst Evol Microbiol 58:2158–2163 [CrossRef]
    [Google Scholar]
  19. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T. 2005; Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Schutter M. E., Dick R. P. 2000; Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668 [CrossRef]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  23. Tan Z. Y., Hurek T., Vinuesa P., Muller P., Ladha J. K., Reinhold-Hurek B. 2001; Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice ( Oryza sativa ) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664 [CrossRef]
    [Google Scholar]
  24. Terefework Z., Kaijalainen S., Lindstrom K. 2001; AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis . J Biotechnol 91:169–180 [CrossRef]
    [Google Scholar]
  25. Tighe S. W., de Lajudie P., Dipietro K., Lindstrom K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  26. Trujillo M. E., Kroppenstedt R. M., Fernandez-Molinero C., Schumann P., Martinez-Molina E. 2007; Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius . Int J Syst Evol Microbiol 57:2799–2804 [CrossRef]
    [Google Scholar]
  27. Turner S. L., Young J. P. W. 2000; The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319 [CrossRef]
    [Google Scholar]
  28. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean ( Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244 [CrossRef]
    [Google Scholar]
  29. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  30. Vincent J. M. 1970; Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook 15: Oxford: Blackwell;
    [Google Scholar]
  31. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. 2005a; Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs , atpD , recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716 [CrossRef]
    [Google Scholar]
  32. Vinuesa P., Silva C., Werner D., Martínez-Romero E. 2005b; Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020156-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020156-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error