1887

Abstract

A bacterial strain (Chol-1S) that is able to oxidize cholesterol to CO and reduce nitrate to dinitrogen was enriched and isolated from an upflow sludge bed (USB) anoxic reactor that treats sanitary landfill leachate from the city of Montevideo, Uruguay. Cells of strain Chol-1S were Gram-negative, rod-shaped to slightly curved, measured 0·5–0·6×1·0-1·3 μm and were motile by a single polar flagellum. Strain Chol-1S grew optimally at 30–32 °C and pH 7·0, with a doubling time of 44–46 h when cholesterol was used as the sole carbon and energy source. The metabolism of strain Chol-1S was strictly respiratory, with oxygen or nitrate as the terminal electron acceptor. The presence of ubiquinone Q-8 as the sole respiratory lipoquinone indicated that strain Chol-1S belonged to the -subclass of the . Phosphatidylethanolamine was the predominant polar lipid and the G+C content of the DNA was 65·3 mol%. The fatty acid profile of strain Chol-1S, cultivated under denitrifying conditions by using a defined mineral medium supplemented with cholesterol, was characterized by the following major components: summed feature 4 (C 7 and/or iso C 2-OH), C, C 7 and hydroxy acid C 3-OH. Minor components included C, C, C, C, C, C, C 10-methyl and hydroxylated acids C 3-OH and C 3-OH. Analysis of the 16S rDNA sequence showed that strain Chol-1S represents a separate lineage within the , , and assemblage of the -. Strain Chol-1S had highest sequence similarity (96·5 %) with strain 72Chol, a denitrifying -. On the basis of polyphasic evidence, strain Chol-1S (=DSM 13999 =ATCC BAA-354) is proposed as the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02039-0
2003-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531085.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02039-0&mimeType=html&fmt=ahah

References

  1. Barrandeguy E., Tarlera S. 2001; Anaerobic oxidation of cholesterol by a denitrifying enrichment. Water Sci Technol 44:145–150
    [Google Scholar]
  2. Blümel S., Mark B., Busse H.-J., Kämpfer P., Stolz A. 2001; Pigmentiphaga kullae gen. nov., sp. nov. a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol 511867–1871 [CrossRef]
    [Google Scholar]
  3. Christensen S., Tiedje J. M. 1988; Sub-parts-per-billion nitrate method: use of an N2O-producing denitrifier to convert NO3 or 15NO3 to N2O. Appl Environ Microbiol 54:1409–1413
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  5. Cox A. D., Wilkinson S. G. 1989; Polar lipids and fatty acids of Pseudomonas cepacia . Biochim Biophys Acta 1001:60–67 [CrossRef]
    [Google Scholar]
  6. Daniels L., Hanson R. S., Phillips J. A. 1994; Chemical analysis. In Methods for General and Molecular Bacteriology pp 514–554Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W.-R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  8. Etchebehere C., Errazquin I., Barrandeguy E., Dabert P., Moletta R., Muxí L. 2001; Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol Ecol 35:259–265 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Freier T. A., Beitz D. C., Li L., Hartman P. A. 1994; Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. Int J Syst Bacteriol 44:137–142 [CrossRef]
    [Google Scholar]
  11. Ghanekar A. S., Nair P. M. 1974; Lipids of Alcaligenes faecalis . Indian J Biochem Biophys 11:233–236
    [Google Scholar]
  12. Gutiérrez S., Hernández A., Viñas M. 1999; Mechanisms of degradation of wool wax in the anaerobic treatment of woolscouring wastewater. Water Sci Technol 40:17–23
    [Google Scholar]
  13. Harder J., Probian C. 1997; Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol 167:269–274 [CrossRef]
    [Google Scholar]
  14. Hiraishi A., Shin Y. K., Sugiyama J., Komagata A. 1992; Isoprenoid quinones and fatty acids of Zoogloea . Antonie van Leeuwenhoek 61:231–236 [CrossRef]
    [Google Scholar]
  15. Hiraishi A., Shin Y. K., Sugiyama J. 1997; Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov. sp. nov. Int J Syst Bacteriol 47:1249–1252 [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  17. Kieslich K. 1985; Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474 [CrossRef]
    [Google Scholar]
  18. Menes R. J., Muxí L. 2002; Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum . Int J Syst Evol Microbiol 52:157–164
    [Google Scholar]
  19. Patureau D., Godon J.-J., Dabert P., Bouchez T., Bernet N., Delgenes J. P., Moletta R. 1998; Microvirgula aerodenitrificans gen. nov., sp. nov. a new Gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int J Syst Bacteriol 48:775–782 [CrossRef]
    [Google Scholar]
  20. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651 [CrossRef]
    [Google Scholar]
  21. Reczek E. B., Burton D. N. 1979; Effects of oxygen tension on the lipid composition of Azotobacter chroococcum . Can J Microbiol 25:1239–44 [CrossRef]
    [Google Scholar]
  22. Reinhold-Hurek B., Hurek T. 2000; Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov. sp. nov. Int J Syst Evol Microbiol 50:649–659 [CrossRef]
    [Google Scholar]
  23. Scholten E., Lukow T., Auling G., Kroppenstedt R. M., Rainey F. A., Diekmann H. 1999; Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49:1045–1051 [CrossRef]
    [Google Scholar]
  24. Song B., Young L. Y., Palleroni N. J. 1998; Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol 48:889–894 [CrossRef]
    [Google Scholar]
  25. Song B., Palleroni N. J., Kerkhof L. J., Häggblom M. M. 2001; Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602
    [Google Scholar]
  26. Tarlera S., Muxí L., Soubes M., Stams A. J. M. 1997; Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656 [CrossRef]
    [Google Scholar]
  27. Taylor C. D., Smith S. O., Gagosian R. B. 1981; Use of microbial enrichments for the study of the anaerobic degradation of cholesterol. Geochim Cosmochim Acta 45:2161–2168 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Touzel J. P., Albagnac G. 1983; Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol Lett 16:241–245 [CrossRef]
    [Google Scholar]
  30. Unz R. F. 1984; Genus IV. Zoogloea Itzigsohn 1868, 30. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 214–219Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Wang Y.-S., Barlaz M. A. 1998; Anaerobic biodegradability of alkylbenzenes and phenol by landfill derived microorganisms. FEMS Microbiol Ecol 25:405–418 [CrossRef]
    [Google Scholar]
  32. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol 1 pp 299–487Edited by Wilkinson S. G., Ratledge C. New York: Academic Press;
    [Google Scholar]
  33. Yabuuchi E., Kosako Y., Oyaizu H., Hotta H., Yano I., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275 [CrossRef]
    [Google Scholar]
  34. Yabuuchi E., Kawamura Y., Kosako Y., Ezaki T. 1998; Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al .) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Ruger and Tan) comb. nov. Microbiol Immunol 42429–438 [CrossRef]
    [Google Scholar]
  35. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02039-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02039-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error