1887

Abstract

Eight strains, isolated from necrotic pear blossoms in València, Spain, were compared with reference strains of and , both of which are pathogenic to species of pear tree, and to other species of the family using a polyphasic approach. Phenotypic analyses clustered the novel isolates into one phenon, distinct from other species of the genus , showing that the novel isolates constituted a homogeneous phenotypic group. Rep-PCR profiles, PCR products obtained with different pairs of primers and plasmid contents determined by restriction analysis showed differences between the novel strains and reference strains of and . Phylogenetic analysis of 16S rRNA, and gene sequences showed that the eight novel strains could not be assigned to any recognized species. On the basis of DNA–DNA hybridization studies, the novel isolates constituted a single group with relatedness values of 87–100 % to the designated type strain of the group, CFBP 5888. Depending on the method used, strain CFBP 5888 showed DNA–DNA relatedness values of between 22.7 and 50 % to strains of the closely related species and . The DNA G+C contents of two of the novel strains, CFBP 5888 and CFBP 5883, were 51.1 and 50.5 mol%, respectively. On the basis of these and previous results, the novel isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CFBP 5888 (=CECT 7348).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020479-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/561.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020479-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ayers S. H., Rupp P., Johnson W. T. 1919; A study of the alkali-forming bacteria in milk. USDA Bulletin 782:
    [Google Scholar]
  3. Bereswill S., Pahl A., Belleman P., Berger F., Zeller W., Geider K. 1992; Sensitive and species-specific detection of Erwinia amylovora by PCR analysis. Appl Environ Microbiol 58:3522–3526
    [Google Scholar]
  4. Bereswill S., Bugert P., Bruchmüller I., Geider K. 1995; Identification of the fire blight pathogen, Erwinia amylovora , by PCR assays with chromosomal DNA. Appl Environ Microbiol 61:2636–2642
    [Google Scholar]
  5. Brenner D. J., McWhorter A. C., Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris : a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115:904–911
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Donat V., Biosca E. G., Peñalver J., López M. M. 2007; Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources. J Appl Microbiol 103:1639–1649 [CrossRef]
    [Google Scholar]
  10. Gardan L., Gouy C., Christen R., Samson R. 2003; Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp.nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53:381–391 [CrossRef]
    [Google Scholar]
  11. Geider K., Auling G., Du Z., Jakovljevic V., Jock S., Völksch B. 2006; Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943 [CrossRef]
    [Google Scholar]
  12. Guilford P. J., Taylor R. K., Clark R. G., Hale C. N., Forster R. L. S. 1996; PCR-based techniques for the detection of Erwinia amylovora . Acta Hort 411:53–56
    [Google Scholar]
  13. Hauben L., Moore E. R. B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J. 1998; Phylogenetic position of phytopathogens within the Enterobacteriaceae . Syst Appl Microbiol 21:384–397 [CrossRef]
    [Google Scholar]
  14. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  15. Hulton C. S. J., Higgins C. F., Sharp P. M. 1991; ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli , Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834 [CrossRef]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Ishimaru C., Klos E. J. 1984; New medium for detecting Erwinia amylovora and its use in epidemiological studies. Phytopatology 74:1342–1345 [CrossRef]
    [Google Scholar]
  18. Janda J. M., Abbott S. L. 2002; Bacterial identification for publication: when is enough enough?. J Clin Microbiol 40:1887–1891 [CrossRef]
    [Google Scholar]
  19. Kim W. S., Gardan L., Rhim S. L., Geider K. 1999; Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees ( Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906 [CrossRef]
    [Google Scholar]
  20. Kim W. S., Hildebrand M., Jock S., Geider K. 2001; Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora . Microbiology 147:2951–2959
    [Google Scholar]
  21. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307
    [Google Scholar]
  22. Llop P., Bonaterra A., Peñalver J., López M. M. 2000; Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovora in asymptomatic plant material. Appl Environ Microbiol 66:2071–2078 [CrossRef]
    [Google Scholar]
  23. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. 1994; Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295
    [Google Scholar]
  24. Maes M., Garbeva P., Crepel C. 1996; Identification and sensitive endophytic detection of the fire blight pathogen Erwinia amylovora with 23S ribosomal DNA sequences and the polymerase chain reaction. Plant Pathol 45:1139–1149 [CrossRef]
    [Google Scholar]
  25. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  26. Martin B., Humbert O., Camara M., Guenzi E., Walker J., Mitchell T., Andrew P., Prudhomme M., Alloing G. other authors 1992; A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae . Nucleic Acids Res 20:3479–3483 [CrossRef]
    [Google Scholar]
  27. Maxson-Stein K., McGhee G. C., Smith J. J., Jones A. L., Sundin G. W. 2003; Genetic analysis of a pathogenic Erwinia sp. isolated from pear in Japan. Phytopathology 93:1393–1399 [CrossRef]
    [Google Scholar]
  28. McGhee G. C., Schnabel E. L., Maxson-Stein K., Jones B., Stromberg V. K., Lacy G. H., Jones A. L. 2002; Relatedness of chromosomal and plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora . Appl Environ Microbiol 68:6182–6192 [CrossRef]
    [Google Scholar]
  29. McManus P. S., Jones A. L. 1995; Detection of Erwinia amylovora by nested PCR and PCR-dot-blot and reverse-blot hybridizations. Phytopathology 85:618–623 [CrossRef]
    [Google Scholar]
  30. Mergaert J., Hauben L., Cnockaert M. C., Swings J. 1999; Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Evol Microbiol 49:337–383
    [Google Scholar]
  31. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef]
    [Google Scholar]
  32. Roselló M., García-Vidal S., Tarín A., Llop M. T., Gorris V., Donat R., Chartier J. P., Paulin L., Gardan J. other authors 2002; Characterization of an Erwinia sp. isolated from necrotic pear blossoms in Valencia, Spain. Acta Hort 590:139–142
    [Google Scholar]
  33. Roselló M., Peñalver J., Llop P., Gorris M. T., Chartier R., García F., Montón C., Cambra M., López M. M. 2006; Identification of an Erwinia sp. different from Erwinia amylovora and responsible for necrosis on pear blossoms. Can J Plant Pathol 28:30–41 [CrossRef]
    [Google Scholar]
  34. Schaad N. W., Jones J. B., Chun W. 2001 Laboratory guide for identification of plant pathogenic bacteria. St Paul, MN: APS Press;
    [Google Scholar]
  35. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification San Francisco: Freeman;
    [Google Scholar]
  36. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  37. Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F. 1984; Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026 [CrossRef]
    [Google Scholar]
  38. Sutra L., Christen R., Bollet C., Simoneau P., Gardan L. 2001; Samsonia erythrinae gen. nov., sp. nov. isolated from bark necrotic lesions of Erythrina sp., and discrimination of plant-pathogenic Enterobacteriaceae by phenotypic features. Int J Syst Evol Microbiol 511291–1304
    [Google Scholar]
  39. Sutton D. D. 1957; Physiology and taxonomy of the genus Erwinia . PhD thesis University of California; Davis, California:
  40. Waleron M., Waleron K., Podhajska A. J., Łojkowska E. 2002; Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583–595
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  42. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  43. Zhou C., Yang Y., Jong A. Y. 1990; Mini-prep in ten minutes. Biotechniques 8:172–173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020479-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020479-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error