1887

Abstract

gene sequences were determined for members of the genus and sequence similarities were compared with those obtained for the 16S rRNA gene. Among the 29 type strains, the mean sequence similarity of the gene (84.5 %) was significantly less than that of the 16S rRNA gene (90.7 %), indicating a high discriminatory power of the gene. Species of the genus were differentiated well by gene sequence analysis, except for JCM 6294, JCM 6292 and JCM 10003. The gene sequence analysis and the levels of DNA–DNA relatedness observed demonstrated that these three type strains are a single species. Consequently, and are heterotypic synonyms of . This study suggests that the gene is an alternative phylogenetic marker for the classification of species of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021154-0
2010-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2984.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021154-0&mimeType=html&fmt=ahah

References

  1. Alexandre A., Laranjo M., Young J. P. W., Oliveira S. 2008; dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849 [CrossRef]
    [Google Scholar]
  2. Benno Y., Watabe J., Mitsuoka T. 1983; Bacteroides pyogenes sp. nov., Bacteroides suis sp. nov., and Bacteroides helcogenes sp. nov., new species from abscesses and feces of pigs. Syst Appl Microbiol 4:396–407 [CrossRef]
    [Google Scholar]
  3. Brousseau R., Hill J. E., Préfontaine G., Goh S.-H., Harel J., Hemmingsen S. M. 2001; Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl Environ Microbiol 67:4828–4833 [CrossRef]
    [Google Scholar]
  4. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium , Dichelobacter , and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int J Syst Bacteriol 40:426–433 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Goh S. H., Santucci Z., Kloos W. E., Faltyn M., George C. G., Driedger D., Hemmingsen S. M. 1997; Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 35:3116–3121
    [Google Scholar]
  8. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M. 2004; cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 [CrossRef]
    [Google Scholar]
  9. Itoh Y., Kawamura Y., Kasai H., Shah M. M., Nhung P. H., Yamada M., Sun X., Koyana T., Hayashi M. other authors 2006; dnaJ and gyrB gene sequence relationship among species and strains of genus Streptococcus . Syst Appl Microbiol 29:368–374 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. Ko K. S., Kuwahara T., Haehwa L., Yoon Y.-J., Kim B.-J., Lee K.-H., Ohnishi Y., Kook Y.-H. 2007; RNA polymerase β -subunit gene ( rpoB ) sequence analysis for the identification of Bacteroides spp. Clin Microbiol Infect 13:48–54 [CrossRef]
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O'neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  13. Kwok A. Y. C., Chow A. W. 2003; Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int J Syst Evol Microbiol 53:87–92 [CrossRef]
    [Google Scholar]
  14. Kwok A. Y. C., Su S.-C., Reynolds R. P., Bay S. J., Av-Gay Y., Dovichi N. J., Chow A. W. 1999; Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus . Int J Syst Bacteriol 49:1181–1192 [CrossRef]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 [CrossRef]
    [Google Scholar]
  16. Love D. N., Johnson J. L., Jones R. F., Bailey M., Calverley A. 1986; Bacteroides tectum sp. nov. and characteristics of other nonpigmented Bacteroides isolates from soft-tissue infections from cats and dogs. Int J Syst Bacteriol 36:123–128 [CrossRef]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  19. Moore L. V. H., Moore W. E. C. 1994; Oribaculum catoniae gen. nov., sp. nov.; Catonella morbi gen. nov., sp. nov.; Hallella seregens gen. nov., sp. nov.; Johnsonella ignava gen. nov., sp. nov.; and Dialister pneumosintes gen. nov., comb. nov., nom. rev., anaerobic gram-negative bacilli from the human gingival crevice. Int J Syst Bacteriol 44:187–192 [CrossRef]
    [Google Scholar]
  20. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. 1985; An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem 260:2605–2608
    [Google Scholar]
  21. Rautio M., Eerola E., Väisänen-Tunkelrott M. L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H. 2003; Reclassification of Bacteroides putredinis (Weinberg et al . 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol 26:182–188 [CrossRef]
    [Google Scholar]
  22. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sakamoto M., Benno Y. 2006; Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen.nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56:1599–1605 [CrossRef]
    [Google Scholar]
  25. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  26. Sakamoto M., Lan P. T. N., Benno Y. 2007; Barnesiella viscericola gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from chicken caecum. Int J Syst Evol Microbiol 57:342–346 [CrossRef]
    [Google Scholar]
  27. Sakamoto M., Suzuki N., Okamoto M. 2010; Prevotella aurantiaca sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 60:500–503 [CrossRef]
    [Google Scholar]
  28. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus , Bacteroides gingivalis , and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol 38:128–131 [CrossRef]
    [Google Scholar]
  29. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  30. Shah H. N., Collins M. D. 1990; Prevotella , a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides . Int J Syst Bacteriol 40:205–208 [CrossRef]
    [Google Scholar]
  31. Shah M. M., Iihara H., Noda M., Song S. X., Nhung P. H., Ohkusu K., Kawamura Y., Ezaki T. 2007; dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus . Int J Syst Evol Microbiol 57:25–30 [CrossRef]
    [Google Scholar]
  32. Song Y., Liu C., Bolanos M., Lee J., McTeague M., Finegold S. M. 2005; Evaluation of 16S rRNA sequencing and reevaluation of a short biochemical scheme for identification of clinically significant Bacteroides species. J Clin Microbiol 43:1531–1537 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D, Kämpfer P., Maiden M. C. J, Nesme X., Rosselló-Mora R, Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Ueki A., Abe K., Kaku N., Watanabe K., Ueki K. 2008; Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58:346–352 [CrossRef]
    [Google Scholar]
  36. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021154-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021154-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error