1887

Abstract

A Gram-positive, aerobic, non-motile actinomycete, strain MN08-A0203, that formed pale yellow to orange-brown colonies and non-fragmented branched substrate mycelium is described. The strain, which produced very scanty aerial mycelium-like structures and scanty formation of spherical bodies on the aerial mycelium on Bennett’s agar medium, was studied in detail to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity studies, strain MN08-A0203 grouped with the genus , being most closely related to the type strain of (97.8 %). Chemotaxonomic data [menaquinone MK-9(H); iso-C (27 %), iso-C (18 %), C H (8 %), C 9-methyl (8 %) as major fatty acids; glucose, galactose, ribose, arabinose, mannose, rhamnose and xylose (trace) as whole cell sugars; diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and ninhydrin-positive phosphoglycolipids as polar phospholipids] supported allocation of the strain to the genus . Furthermore, the results of DNA–DNA hybridization of strain MN08-A0203 with the type strain of revealed that the two strains were genetically distinct from each other. Moreover, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain MN08-A0203 from closely related species. Thus, MN08-A0203 represents a novel species of the genus , for which the name sp. nov. is proposed, with MN08-A0203 ( = NBRC 105883  = VTCC D9-23) as the type strain.

Funding
This study was supported by the:
  • Department of Biotechnology, NITE, Japan
  • Institute of Biology, Mongolian Academy of Sciences, Mongolia
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021659-0
2011-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1033.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021659-0&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M. 1995; Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. J Mol Evol 40:622–628 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Eck R. V., Dayhoff M. O. 1966 Atlas of Protein Sequences and Structure Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  5. Embley M. T., Smida J., Stackebrandt E. 1988; The phylogeny of mycolateless wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov.. Syst Appl Microbiol 11:44–52 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J Bacteriol 73:15–27[PubMed]
    [Google Scholar]
  10. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509 [View Article]
    [Google Scholar]
  13. Hayakawa M., Otoguro M., Takeuchi T., Yamazaki T., Iimura Y. 2000; Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie van Leeuwenhoek 78:171–185 [View Article][PubMed]
    [Google Scholar]
  14. Humble M. W., King A., Phillips I. 1977; API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277 [View Article][PubMed]
    [Google Scholar]
  15. Indananda C., Matsumoto A., Inahashi Y., Takahashi Y., Duangmal K., Thamchaipenet A. 2010; Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae . Int J Syst Evol Microbiol 60:1141–1146 [View Article][PubMed]
    [Google Scholar]
  16. Kloos W. E., Tornabene T. G., Schleifer K. H. 1974; Isolation and characterization of Micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae . Int J Syst Bacteriol 24:79–101 [View Article]
    [Google Scholar]
  17. Lechevalier M. P., De Bièvre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [View Article]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  21. Mori K., Kim H., Kakegawa T., Hanada S. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290 [View Article][PubMed]
    [Google Scholar]
  22. Nozawa Y., Sakai N., Arai K., Kawasaki Y., Harada K. 2007; Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey’s method. J Microbiol Methods 70:306–311 [View Article][PubMed]
    [Google Scholar]
  23. Rayner R. W. 1970 A Mycological Colour Chart Kew, UK: Commonwealth Mycological Institute and British Mycological Society;
    [Google Scholar]
  24. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  25. Saito H., Miura K. I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  28. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  29. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:479–491 [View Article]
    [Google Scholar]
  30. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  31. Tamura T., Hatano K. 2001; Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov.. Int J Syst Evol Microbiol 51:2119–2125[PubMed] [CrossRef]
    [Google Scholar]
  32. Tamura T., Nakagaito Y., Nishii T., Hasegawa T., Stackebrandt E., Yokota A. 1994; A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov.. Int J Syst Bacteriol 44:193–203 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021659-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021659-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error