1887

Abstract

A thermophilic, Gram-positive bacterium that formed a branched vegetative mycelium was isolated from compost. The strain, designated I3, grew at temperatures between 35 and 62 °C, with optimum growth at 50–55 °C. No growth was observed below 29 °C or above 65 °C. The pH range for growth was 5.7–10.0, the pH for optimum growth was 7.0 and no growth was observed below pH 5.6 or above pH 10.8. The DNA G+C content of strain I3 was 69.2 mol%. The major fatty acids found were C iso (14.2 %), C anteiso (12.1 %), C iso (16.3 %) and C anteiso (21.7 %). The major menaquinones were MK-9(H), MK-10(H) and MK-11(H). The cell wall contained glutamic acid, glycine, alanine and -diaminopimelic acid in a molar ratio of 1.0 : 3.9 : 0.6 : 0.5. The polar lipids consisted of ninhydrin-positive phosphoglycolipids, phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. The cell-wall sugars were rhamnose and arabinose. 16S rRNA gene sequence analysis assigned this actinomycete to the family , but its 16S rRNA gene sequence shared no more than 95.5 % similarity with those of other members of the family. The chemotaxonomic and phenotypic characteristics of strain I3 differed in some respects from those of members of the genus , the most closely related genus. Therefore, strain I3 represents a novel species in a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is I3 (=JCM 16421=DSM 22891).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021741-0
2011-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/86.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021741-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Dorsch M., Stackebrandt E. 1989; Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int J Syst Bacteriol 39:1–6 [CrossRef]
    [Google Scholar]
  2. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  5. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica , and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  6. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29:56–58 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  11. Miller E. S., Woese C. R., Brenner S. 1991; Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 41:363–368 [CrossRef]
    [Google Scholar]
  12. Nesterenko O. A., Kvasnikov E. I., Nogina T. M. 1985; Nocardioidaceae fam. nov., a new family of the order Actinomycetales Buchanan 1917. Mikrobiol Zh 47:3–12
    [Google Scholar]
  13. Nesterenko O. A., Kvasnikov E. I., Nogina T. M. 1990; Nocardioidaceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 34. Int J Syst Bacteriol 40:320–321 [CrossRef]
    [Google Scholar]
  14. O'Donnell A. G., Goodfellow M., Minnikin D. E. 1982 Lipids in the classification of Nocardioides : reclassification of Arthrobacter simplex (Jensen) Lochhead in the genus Nocardioides (Prauser) emend.O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 133323–329 [CrossRef]
  15. Park Y. H., Yoon J. H., Shin Y. K., Suzuki K., Kudo T., Seino A., Kim H. J., Lee J. S., Lee S. T. 1999; Classification of ‘ Nocardioides fulvus ’ IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov. Int J Syst Bacteriol 49:743–752 [CrossRef]
    [Google Scholar]
  16. Prauser H. 1976; Nocardioides , a new genus of the order Actinomycetales . Int J Syst Bacteriol 26:58–65 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  19. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. L. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology. pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  21. Sohn K., Hong S. G., Bae K. S., Chun J. 2003; Transfer of Hongia koreensis Lee et al. 2000 to the genus Kribbella Park et al . 1999 as Kribbella koreensis comb. nov. Int J Syst Evol Microbiol 53:1005–1007 [CrossRef]
    [Google Scholar]
  22. Song L., Li W. J., Wang Q. L., Chen G. Z., Zhang Y. S., Xu L. H. 2005; Jiangella gangsuensis gen. nov., sp. nov. a novel actinomycete from a desert soil in north-west China. Int J Syst Evol Microbiol 55:881–884 [CrossRef]
    [Google Scholar]
  23. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  24. Tamura T., Yokota A. 1994; Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 44:608–611 [CrossRef]
    [Google Scholar]
  25. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Urzì C., Salamone P., Schumann P., Stackebrandt E. 2000; Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 50:529–536 [CrossRef]
    [Google Scholar]
  30. Wang Y. M., Zhang Z. S., Xu X. L., Ruan J. S., Wang Y. 2001; Actinopolymorpha singaporensis gen. nov., sp. nov. a novel actinomycete from the tropical rainforest of Singapore. Int J Syst Evol Microbiol 51:467–473
    [Google Scholar]
  31. Yabe S., Kato A., Hazaka M., Yokoto A. 2009; Thermaerobacter composti sp. nov., a novel extremely thermophilic bacterium isolated from compost. J Gen Appl Microbiol 55:323–328 [CrossRef]
    [Google Scholar]
  32. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A. 2010; Thermosporothrix hazakensis gen. nov., sp. nov. isolated from compost and description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria . Int J Syst Evol Microbiol 60:1794–1801 [CrossRef]
    [Google Scholar]
  33. Yokota A., Tamura T., Nishii T., Hasegawa T. 1993; Kineococcus aurantiacus gen. nov., sp. nov. a new aerobic Gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 4352–57 [CrossRef]
    [Google Scholar]
  34. Zhi X. Y., Li W. J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria , with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021741-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021741-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error