1887

Abstract

A novel acidiphilic, hydrogenotrophic methanogen, designated strain 6A8, was isolated from an acidic (pH 4.0–4.5) and ombrotrophic (rain-fed) bog located near Ithaca, NY, USA. Cultures were dimorphic, containing thin rods (0.2–0.3 μm in diameter and 0.8–3.0 μm long) and irregular cocci (0.2–0.8 μm in diameter). The culture utilized H/CO to produce methane but did not utilize formate, acetate, methanol, ethanol, 2-propanol, butanol or trimethylamine. Optimal growth conditions were near pH 5.1 and 35 °C. The culture grew in basal medium containing as little as 0.43 mM Na and growth was inhibited completely by 50 mM NaCl. To our knowledge, strain 6A8 is one of the most acidiphilic (lowest pH optimum) and salt-sensitive methanogens in pure culture. Acetate, coenzyme M, vitamins and yeast extract were required for growth. It is proposed that a new genus and species be established for this organism, gen. nov., sp. nov. The type strain of is 6A8 (=DSM 21154 =JCM 14090).

Keyword(s): SSU, small subunit
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021782-0
2011-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/45.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021782-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Basiliko N., Yavitt J. B., Dees P. M., Merkel S. M. 2003; Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20:563–577 [CrossRef]
    [Google Scholar]
  3. Blotevogel K. H., Fischer U., Lupkes K. H. 1986; Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can J Microbiol 32:127–131 [CrossRef]
    [Google Scholar]
  4. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219 [CrossRef]
    [Google Scholar]
  5. Boone D. R., Whitman W. B., Koga Y. 2001; Order II. Methanomicrobiales Balch and Wolfe 1981, 216VP . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 1 pp 246–247 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  6. Bräuer S. L., Yavitt J. B., Zinder S. H. 2004; Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J 21:433–443 [CrossRef]
    [Google Scholar]
  7. Bräuer S. L., Cadillo-Quiroz H., Yashiro E., Yavitt J. B., Zinder S. H. 2006a; Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194 [CrossRef]
    [Google Scholar]
  8. Bräuer S. L., Yashiro E., Ueno N. G., Yavitt J. B., Zinder S. H. 2006b; Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57:206–216 [CrossRef]
    [Google Scholar]
  9. Cadillo-Quiroz H., Bräuer S. L., Yashiro E., Sun C., Yavitt J. B., Zinder S. H. 2006; Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440 [CrossRef]
    [Google Scholar]
  10. Cadillo-Quiroz H., Yashiro E., Yavitt J. B., Zinder S. H. 2008; Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74:2059–2068 [CrossRef]
    [Google Scholar]
  11. Cadillo-Quiroz H., Yavitt J. B., Zinder S. H. 2009; Methanosphaerula palustris gen. nov., sp. nov. a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59:928–935 [CrossRef]
    [Google Scholar]
  12. Chong S. C., Liu Y., Cummins M., Valentine D. L., Boone D. R. 2002; Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81:263–270 [CrossRef]
    [Google Scholar]
  13. Deppenmeier U., Lienard T., Gottschalk G. 1999; Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.68. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  15. Ferry J. G., Smith P. H., Wolfe R. S. 1974; Methanospirillum , a new genus of methanogenic bacteria and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24:465–469 [CrossRef]
    [Google Scholar]
  16. Franzmann P. D., Liu Y. T., Balkwill D. L., Aldrich H. C., deMacario E. C., Boone D. R. 1997; Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072 [CrossRef]
    [Google Scholar]
  17. Galand P. E., Saarnio S., Fritze H., Yrjala K. 2002; Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449 [CrossRef]
    [Google Scholar]
  18. Galand P. E., Fritze H., Yrjala K. 2003; Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5:1133–1143 [CrossRef]
    [Google Scholar]
  19. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R. 1996; Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675
    [Google Scholar]
  20. Harris J. E., Pinn P. A., Davis R. P. 1984; Isolation and characterization of a novel thermophilic freshwater methanogen. Appl Environ Microbiol 48:1123–1128
    [Google Scholar]
  21. Horn M. A., Matthies C., Küsel K., Schramm A., Drake H. L. 2003; Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83 [CrossRef]
    [Google Scholar]
  22. Imachi H., Sakai S., Sekiguchi Y., Hanada S., Kamagata Y., Ohashi A., Harada H. 2008; Methanolinea tarda gen. nov., sp nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58:294–301 [CrossRef]
    [Google Scholar]
  23. Jarrell K. F., Kalmokoff M. L. 1988; Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34:557–576 [CrossRef]
    [Google Scholar]
  24. Juottonen H., Galand P. E., Tuittila E. S., Laine J., Fritze H., Yrjala K. 2005; Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557 [CrossRef]
    [Google Scholar]
  25. Kandler O., Konig H. 1998; Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308 [CrossRef]
    [Google Scholar]
  26. Koga Y., Morii H., Akagawa-Matsushita M., Ohga I. 1998; Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens: further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236 [CrossRef]
    [Google Scholar]
  27. Kotsyurbenko O. R., Friedrich M. W., Simankova M. V., Nozhevnikova A. N., Golyshin P. N., Timmis K. N., Conrad R. 2007; Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348 [CrossRef]
    [Google Scholar]
  28. Lai M. C., Chen S. C. 2001; Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 51:1873–1880 [CrossRef]
    [Google Scholar]
  29. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  30. Madigan M. T., Martinko J. M., Parker J. 2000 Brock: Biology of Microorganisms Upper Saddle River, NJ: Prentice-Hall;
    [Google Scholar]
  31. Mikucki J. A., Liu Y. T., Delwiche M., Colwell F. S., Boone D. R. 2003; Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69:3311–3316 [CrossRef]
    [Google Scholar]
  32. Ollivier B. M., Mah R. A., Garcia J. L., Robinson R. 1985; Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35:127–130 [CrossRef]
    [Google Scholar]
  33. Ollivier B., Cayol J. L., Patel B. K. C., Magot M., Fardeau M. L., Garcia J. L. 1997; Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147:51–56 [CrossRef]
    [Google Scholar]
  34. Ollivier B., Fardeau M. L., Cayol J. L., Magot M., Patel B. K. C., Prensier G., Garcia J. L. 1998; Methanocalculus halotolerans gen. , nov., sp. nov. isolated from an oil-producing well. Int J Syst Bacteriol 48821–828 [CrossRef]
    [Google Scholar]
  35. Patel G. B., Sprott G. D., Fein J. E. 1990; Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidophilic methanogen. Int J Syst Bacteriol 40:12–18 [CrossRef]
    [Google Scholar]
  36. Paynter M. J., Hungate R. E. 1968; Characterization of Methanobacterium mobilis , sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951
    [Google Scholar]
  37. Perski H.-J., Schönheit P., Thauer R. K. 1982; Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett 143:323–326 [CrossRef]
    [Google Scholar]
  38. Rivard C. J., Henson J. M., Thomas M. V., Smith P. H. 1983; Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490
    [Google Scholar]
  39. Sizova M. V., Panikov N. S., Tourova T. P., Flanagan P. W. 2003; Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45:301–315 [CrossRef]
    [Google Scholar]
  40. Sprott G. D., Jarrell K. F. 1981; K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum . Can J Microbiol 27:444–451 [CrossRef]
    [Google Scholar]
  41. Sturt H. F., Summons R. E., Smith K., Elvert M., Hinrichs K. U. 2004; Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628 [CrossRef]
    [Google Scholar]
  42. Thomas N. A., Bardy S. L., Jarrell K. F. 2001; The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 25:147–174 [CrossRef]
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  44. Van Bruggen J. J. A., Zwart K. B., Hermans J. G. F., Van Hove E. M., Stumm C. K., Vogels G. D. 1986; Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374 [CrossRef]
    [Google Scholar]
  45. Wildgruber G., Thomm M., Konig H., Ober K., Ricchiuto T., Stetter K. O. 1982; Methanoplanus limicola , a plate-shaped methanogen representing a novel family, the Methanoplanaceae . Arch Microbiol 132:31–36 [CrossRef]
    [Google Scholar]
  46. Zellner G., Alten C., Stackebrandt E., Demacario E. C., Winter J. 1987; Isolation and characterization of Methanocorpusculum parvum , gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 14713–20 [CrossRef]
    [Google Scholar]
  47. Zellner G., Messner P., Winter J., Stackebrandt E. 1998; Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48:1111–1117 [CrossRef]
    [Google Scholar]
  48. Zhang C. L., Pearson A., Li Y. L., Mills G., Wiegel J. 2006; Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol 72:4419–4422 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021782-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error