1887

Abstract

A xylan-degrading bacterium, strain X11-1, was isolated from soil collected in Nan province, Thailand. The strain was characterized based on its phenotypic and genotypic characteristics. Strain X11-1 was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. It contained -diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7, anteiso-C (56.6 %) and C (14.0 %) were the predominant cellular fatty acids and diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol were the major phospholipids. The DNA G+C content was 51.6 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain X11-1 was affiliated to the genus and was closely related to KACC 11505 and CCM 3894, with 96.5 % sequence similarity. Therefore, the strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is X11-1 (=KCTC 13042 =PCU 311 =TISTR 1829).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022269-0
2011-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022269-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1994; Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB , List no. 51. Int J Syst Bacteriol 44:852–853 [CrossRef]
    [Google Scholar]
  3. Aÿ J., Goetz F., Borriss R., Heinemann U. 1998; Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95:6613–6618 [CrossRef]
    [Google Scholar]
  4. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  5. Berge O., Guinebretière M. H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616
    [Google Scholar]
  6. Chou J. H., Chou Y. J., Lin K. Y., Sheu S. Y., Sheu D. S., Arun A. B., Young C. C., Chen W. M. 2007; Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57:1346–1350 [CrossRef]
    [Google Scholar]
  7. Daane L. L., Harjono I., Barns S. M., Launen L. A., Palleroni N. J., Häggblom M. M. 2002; PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139
    [Google Scholar]
  8. Dasman Kajiyama S., Kawasaki H., Yagi M., Seki T., Fukusaki E., Kobayashi A. 2002; Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune . Int J Syst Evol Microbiol 52:1669–1674 [CrossRef]
    [Google Scholar]
  9. Euzéby J. P. 2010; Genus Paenibacillus . In List of Prokaryotic Names with Standing in Nomenclature Last full update 16 February 2010 http://www.bacterio.cict.fr/p/paenibacillus.html
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  12. Hespell R. B. 1996; Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32:291–296 [CrossRef]
    [Google Scholar]
  13. Heyndrickx M., Vandemeulebroecke K., Scheldeman P., Hoste B., Kersters K., De Vos P., Logan N. A., Aziz A. M., Ali N., Berkeley R. C. W. 1995; Paenibacillus (formerly Bacillus ) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym ofPaenibacillus (formerly Bacillus ) validus (Nakamura 1984) Ash et al. 1994: emended description of P. validus . . Int J Syst Bacteriol 45:661–669 [CrossRef]
    [Google Scholar]
  14. Khianngam S., Tanasupawat S., Lee J.-S., Lee K. C., Akaracharanya A. 2009a; Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov. and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:130–134 [CrossRef]
    [Google Scholar]
  15. Khianngam S., Akaracharanya A., Tanasupawat S., Lee K. C., Lee J.-S. 2009b; Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria from soil. Int J Syst Evol Microbiol 59:564–568 [CrossRef]
    [Google Scholar]
  16. Kim D. S., Bae C. Y., Jeon J. J., Chun S. J., Oh H. W., Hong S. G., Baek K. S., Moon E. Y., Bae K. S. 2004; Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54:2031–2035 [CrossRef]
    [Google Scholar]
  17. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  18. Lee J. C., Yoon K. H. 2008; Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int J Syst Evol Microbiol 58:612–616 [CrossRef]
    [Google Scholar]
  19. Lee H.-J., Shin D.-J., Cho N. C., Kim H.-O., Shin S.-Y., Im S.-Y., Lee H. B., Chum S. B., Bai S. 2000; Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22:387–392 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  21. Morales P., Madarro A., Flors A., Sendra J. M., Pérez-González J. A. 1995; Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa . Enzyme Microb Technol 17:424–429 [CrossRef]
    [Google Scholar]
  22. Nelson D. M., Glawe A. J., Labeda D. P., Cann I. K. O., Mackie R. I. 2009; Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 59:1708–1714 [CrossRef]
    [Google Scholar]
  23. Nielsen P., Sørensen J. 1997; Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192 [CrossRef]
    [Google Scholar]
  24. Park M. J., Kim H. B., An D. S., Yang H. C., Oh S. T., Chung H. J., Yang D. C. 2007; Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57:146–150 [CrossRef]
    [Google Scholar]
  25. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. 2005a; Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55:405–408 [CrossRef]
    [Google Scholar]
  26. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. 2005b; Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 55:743–746 [CrossRef]
    [Google Scholar]
  27. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E. 2006; Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 56:2777–2781 [CrossRef]
    [Google Scholar]
  28. Roux V., Raoult D. 2004; Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054 [CrossRef]
    [Google Scholar]
  29. Ruijssenaars H. J., Hartsmans S. 2001; Plate screening methods for the detection of polysaccharase producing microorganisms. Appl Microbiol Biotechnol 55:143–149 [CrossRef]
    [Google Scholar]
  30. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Sánchez M. M., Fritze D., Blanco A., Spröer C., Tindall B. J., Schumann P., Kroppenstedt R. M., Diaz P., Pastor F. I. J. 2005; Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55:935–939 [CrossRef]
    [Google Scholar]
  33. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  34. Scheldeman P., Goossens K., Rodriguez-Diaz M., Pil A., Goris J., Herman L., De Vos P., Logan N. A., Heyndrickx M. 2004; Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891 [CrossRef]
    [Google Scholar]
  35. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  37. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  38. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. 2004; Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α -proteobacteria. J Gen Appl Microbiol 50:159–167 [CrossRef]
    [Google Scholar]
  39. Teather R. M., Wood P. J. 1982; Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780
    [Google Scholar]
  40. Ten L. N., Baek S.-H., Im W.-T., Lee M., Oh H. W., Lee S.-T. 2006; Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2677–2681 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  42. Velázquez E, de Miguel T, Poza M., Rivas R., Rosselló-Mora R., Villa T. G. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef]
    [Google Scholar]
  43. Zamost B. L., Nielsen H. K., Starnes R. L. 1991; Thermostable enzymes for industrial applications. J Ind Microbiol 8:71–82 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022269-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022269-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error