1887

Abstract

A group of four diverse rhizobial isolates and two soil isolates that are highly related to were characterized by a polyphasic approach. On the basis of DNA–DNA hybridizations and phenotypic features, these strains cannot be distinguished clearly form , a soil bacterium that was described in 1982, mainly on the basis of phenotypic characteristics. Phylogenetically, and form a single group in the 16S rDNA dendrogram of the -, as well as in an analysis of partial gene sequences. They may therefore be regarded as a single genus. Because was proposed in 1988, according to the (1990 Revision) the older name, , has priority. However, there are several reasons why a change from to may not be the best solution and making an exception to Rule 38 may be more appropriate. We therefore propose the species comb. nov. and put forward a Request for an Opinion to the Judicial Commission regarding the conservation of over .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02264-0
2003-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531207.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02264-0&mimeType=html&fmt=ahah

References

  1. Acosta-Durán C., Martínez-Romero E. 2002; Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium , a natural host of Rhizobium tropici . Arch Microbiol 178:161–164 [CrossRef]
    [Google Scholar]
  2. Balkwill D. L. 2003; The genus Ensifer . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 2 in press Edited by Garrity G. M. New York: Springer Verlag;
    [Google Scholar]
  3. Barnett M. J., Fisher R. F., Jones T.23 other authors 2001; Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 98:9883–9888 [CrossRef]
    [Google Scholar]
  4. Buchanan R. E., Gibbons N. E.editors 1974 Bergey's Manual of Determinative Bacteriology , 8th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Capela D., Barloy-Hubler F., Gouzy J.25 other authors 2001; Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci U S A 98:9877–9882 [CrossRef]
    [Google Scholar]
  6. Casida L. E. Jr 1980; Bacterial predators of Micrococcus luteus in soil. Appl Environ Microbiol 39:1035–1041
    [Google Scholar]
  7. Casida L. E. Jr 1982; Ensifer adhaerens , gen. nov., sp. nov. a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32339–345 [CrossRef]
    [Google Scholar]
  8. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397 [CrossRef]
    [Google Scholar]
  9. Coenye T., Mahenthiralingam E., Henry D., LiPuma J. J., Laevens S., Gillis M., Speert D. P., Vandamme P. 2001; Burkholderia ambifaria sp nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490
    [Google Scholar]
  10. Dejonghe W., Goris J., El Fantroussi S., Höfte M., De Vos P., Verstraete W., Top E. 2000; Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304 [CrossRef]
    [Google Scholar]
  11. de Lajudie P., Willems A., Nick G.9 other authors 1998; Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382 [CrossRef]
    [Google Scholar]
  12. Del Papa M. F., Balagué L. J., Castro-Sowinski S.9 other authors 1999; Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central Argentina and Uruguay. Appl Environ Microbiol 65:1420–1427
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  14. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  15. Fernández-López M., D'Haeze W., Van Montagu M., Holsters M. 1998; Changes in the glycosylation pattern at the reducing end of azorhizobial Nod factors affect nodulation efficiency. FEMS Microbiol Lett 158:237–242 [CrossRef]
    [Google Scholar]
  16. Finan T. M., Weidner S., Wong K.9 other authors 2001; The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A 98:9889–9894 [CrossRef]
    [Google Scholar]
  17. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048 [CrossRef]
    [Google Scholar]
  18. Goris J., Dejonghe W., Falsen E., De Clerck E., Geeraerts B., Willems A., Top E., Vandamme P., De Vos P. 2002; Diversity transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- & B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352 [CrossRef]
    [Google Scholar]
  19. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int J Syst Bacteriol 34:56–70 [CrossRef]
    [Google Scholar]
  20. Laguerre G., Mauzier S. I., Amarger N. 1992; Plasmid profiles and restriction fragment lenght polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Microbiol Ecol 101:17–26
    [Google Scholar]
  21. Laguerre G., Bardin M., Amarger N. 1993; Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Can J Microbiol 39:1142–1149 [CrossRef]
    [Google Scholar]
  22. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.editors 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Lindström K., Lehtomäki S. 1988; Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. ( Galega ) compared with other fast-growing rhizobia. FEMS Microbiol Lett 50:277–287 [CrossRef]
    [Google Scholar]
  24. Lindström K., Martínez-Romero M. E. 2002; International Committee on the Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting 4 July 2001; Hamilton, Canada. Int J Syst Evol Microbiol 52:2337 [CrossRef]
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  27. Moreira F. M. S., Gillis M., Pot B., Kersters K., Franco A. F. 1993; Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst Appl Microbiol 16:135–146 [CrossRef]
    [Google Scholar]
  28. Muñoz E., Villadas P. J., Toro N. 2001; Ectopic transposition of a group II intron in natural bacterial populations. Mol Microbiol 41:645–652 [CrossRef]
    [Google Scholar]
  29. Nick G., de Lajudie P., Eardley B. D., Suomalainen S., Paulin L., Zhang X., Gillis M., Lindström K. 1999; Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368 [CrossRef]
    [Google Scholar]
  30. Phillips I. 1991; A guide to sensitivity testing. J Antimicrob Chemother 27:Suppl. D1–50
    [Google Scholar]
  31. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics pp 493–521Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  32. Rigaud J., Puppo A. 1975; Indole-3 acetic catabolism by soybean bacteroids. J Gen Microbiol 88:223–228 [CrossRef]
    [Google Scholar]
  33. Rogel M. A., Hernández-Lucas I., Kuykendall L. D., Balkwill D. L., Martínez-Romero E. 2001; Nitrogen fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268 [CrossRef]
    [Google Scholar]
  34. Scholla M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486 [CrossRef]
    [Google Scholar]
  35. Segovia I., Pinero D., Palacios R., Martínez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum . Appl Environ Microbiol 57:426–433
    [Google Scholar]
  36. Segundo E., Martínez-Abarca F., van Dillewijn P., Fernández-López M., Lagares A., Martínez-Drets G., Niehaus K., Pühler A., Toro N. 1999; Characterization of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiol Ecol 28:169–176 [CrossRef]
    [Google Scholar]
  37. Sivakumaran S., Lockhart P. J., Jarvis B. D. W. 1997; Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum bv. trifolii . Can J Microbiol 43:164–177 [CrossRef]
    [Google Scholar]
  38. Song B. K., Palleroni N. J., Häggblom M. M. 2000; Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453 [CrossRef]
    [Google Scholar]
  39. Soto M. J., Zorzano A., Mercado-Blanco J., Lepek V., Olivares J., Toro N. 1993; Nucleotide sequence and characterization of Rhizobium meliloti competitiveness genes nfe . J Mol Biol 229:570–576 [CrossRef]
    [Google Scholar]
  40. Sullivan J. T., Patrick H. N., Lowther W. L., Scott D. B., Ronson C. W. 1995; Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989 [CrossRef]
    [Google Scholar]
  41. Sullivan J. T., Eardly B. D., Van Berkum P., Ronson C. W. 1996; Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus . Appl Environ Microbiol 62:2818–2825
    [Google Scholar]
  42. Toledo I., Lloret L., Martínez-Romero E. 2003; Sinorhizobium americanus sp. nov, a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64 [CrossRef]
    [Google Scholar]
  43. Ursing J. B., Rosselló-Mora R. A., García-Valdés Lalucat J. 1995; Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604 [CrossRef]
    [Google Scholar]
  44. Vandamme P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R., Revets H., Lauwers S., Gillis M., Kersters K., Govan J. R. W. 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200 [CrossRef]
    [Google Scholar]
  45. Vandamme P., Mahenthiralingam E., Holmes B., Coenye T., Hoste B., De Vos P., Henry D., Speert D. P. 2000; Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV. J Clin Microbiol 38:1042–1047
    [Google Scholar]
  46. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosc 10:569–570
    [Google Scholar]
  47. Van Dillewijn P. 2000; Constucción de cepas de Sinorhizobium meliloti altamente competitivas para la nodulación de alfalfa (Medicago sativa L.) y su liberación en campo . PhD thesis University of Granada;
  48. Villadas P. E., Velázquez E., Martínez-Molina E., Toro N. 1995; Identification of nodule-dominant Rhizobium meliloti strains carrying pRmeGR4b type plasmid within indigenous soil populations by PCR using primers derived from specific DNA sequences. FEMS Microbiol Ecol 17:161–168 [CrossRef]
    [Google Scholar]
  49. Wang E. T., Tan Z. Y., Willems A., Fernández-López M., Reinhold-Hurek B., Martínez-Romero E. 2002; Sinorhizobium morelense sp. nov., a Leucaena leucocephala -associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693 [CrossRef]
    [Google Scholar]
  50. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  51. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., Gillis M. 2001; DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51:1315–1322
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02264-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02264-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error