1887

Abstract

subsp. ’ NCIMB 10462 has been demonstrated by a polyphasic taxonomic approach to be a member of the genus . 16S rDNA sequence analysis suggests that this is the only genus that could accept this specimen. The sequence is 95·5 % similar to that of subsp. ACM 2601 (the type strain of the type species of the genus), which is its closest relation. The genomic DNA G+C content was determined to be 53·3 mol%, which is similar to the values obtained for the validly described species. DNA–DNA hybridization experiments have shown that strain NCIMB 10462 (=NCDO 2697) represents a novel species; therefore, it is proposed that it be designated as the type strain of the novel species sp. nov. This study also used 16S rDNA analysis, DNA–DNA hybridization experiments and phenotypic testing to revive the species sp. nov., nom. rev. and sp. nov., nom. rev. NCIMB 8633 (=LMG 2848) and NCIMB 8634 (=LMG 2847) are the proposed type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02271-0
2003-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02271-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F. 1998; GenBank. Nucleic Acids Res 26:1–7 [CrossRef]
    [Google Scholar]
  3. Blackall L. L., Hayward A. C., Sly L. I. 1985; Cellulolytic and dextranolytic gram-negative bacteria: revival of the genus Cellvibrio . J Appl Bacteriol 59:81–97 [CrossRef]
    [Google Scholar]
  4. Brown G. R., Sutcliffe I. C., Cummings S. P. 2001; Reclassification of [ Pseudomonas ] doudoroffii (Baumann et al . 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 51:67–72
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  6. Collins C. H., Lyne P. M., Grange J. M. 1991; In Collins and Lyne's Microbiological Methods . , 6th edn. pp 68–107 Oxford: Butterworth–Heinemann;
  7. Dees C., Ringelberg D., Scott T. C., Phelps T. J. 1995; Characterization of the cellulose-degrading bacterium NCIMB-10462. Appl Biochem Biotechnol 51:52263–274
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  9. Doudoroff M., Palleroni N. J. 1974; Genus I. Pseudomonas Migula 1894. Addendum IV. Bergey's Manual of Determinative Bacteriology . , 8th edn. pp 241–242Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
  10. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5.1. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  12. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  13. Hazlewood G. P., Laurie J. I., Ferreira L. M. A., Gilbert H. J. 1992; Pseudomonas fluorescens subsp. cellulosa : an alternative model for bacterial cellulase. J Appl Bacteriol 72:244–251 [CrossRef]
    [Google Scholar]
  14. Hildebrand D. C. 1971; Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61:1430–1436 [CrossRef]
    [Google Scholar]
  15. Humphry D. R., George A., Black G. W., Cummings S. P. 2001; Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  18. Kates M. editor 1986 Techniques of Lipidology: Isolation, Analysis and Identification of Lipids , 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  19. Kellett L. E., Poole D. M., Ferreira L. M. A., Durrant A. J., Hazlewood G. P., Gilbert H. J. 1990; Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J 272:369–376
    [Google Scholar]
  20. King E. O., Ward W. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  21. Komagata K., Suzuki K. I. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  22. Lednická D., Mergaert J., Cnockaert M. C., Swings J. 2000; Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. Syst Appl Microbiol 23:292–299 [CrossRef]
    [Google Scholar]
  23. Mergaert J., Lednická D., Goris J., Cnockaert M. C., De Vos P., Swings J. 2003; Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol 53:465–471 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428 [CrossRef]
    [Google Scholar]
  26. Millward-Sadler S. J., Davidson K., Hazlewood G. P., Black G. W., Gilbert H. J., Clarke J. H. 1995; Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus . Biochem J 312:39–48
    [Google Scholar]
  27. Nakanishi I., Kimura K., Suzuki T., Ishikawa M., Banno I., Sakane T., Harada T. 1976; Demonstration of curdlan-type polysaccharide and some other β -1,3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 22:1–11 [CrossRef]
    [Google Scholar]
  28. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  29. Russell N. J., Kogut M., Kates M. 1985; Phospholipid biosynthesis in the moderately halophilic bacterium Vibrio costicola during adaptation to changing salt concentrations. J Gen Microbiol 131:781–789
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. vol 3 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. 1982; Nucleotide sequence of bacteriophage λ DNA. J Mol Biol 162:729–773 [CrossRef]
    [Google Scholar]
  32. Skerman V. B. D., McGowan V., Sneath P. H. A. editors 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30225–420 [CrossRef]
    [Google Scholar]
  33. Smibert R. M., Krieg N. R. 1984; General characterization. In Manual of Methods for General Bacteriology . pp 411–420Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
  34. Stapp C., Bortels H. 1934; Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu. Zentbl Bakteriol 90:28–69
    [Google Scholar]
  35. Sutcliffe I. C. 1994; Identification of a lipomannan from Rothia dentocariosa . Syst Appl Microbiol 17:321–326 [CrossRef]
    [Google Scholar]
  36. Ueda K., Ishikawa S., Itami T., Asai T. 1952; Studies on the aerobic mesophilic cellulose-decomposing bacteria. Part 5-2. Taxonomical study on genus Pseudomonas . J Agric Chem Soc Jpn 26:35–41
    [Google Scholar]
  37. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  39. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  40. Winogradsky S. 1929; Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Ann Inst Pasteur 43:549–633
    [Google Scholar]
  41. Winogradsky S., Breed R. S., Verona O. 1957; Genus IV. Cellvibrio . In Bergey's Manual of Determinative Bacteriology . , 7th edn. pp 250–252Edited by Breed R. S., Murray N. R., Smith E. G. D. Baltimore: Williams & Wilkins;
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02271-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02271-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error