1887

Abstract

A facultatively denitrifying bacterium, strain K601, was isolated at 30 °C from a municipal sewage plant on cyclohexanol as sole carbon source and nitrate as electron acceptor. Under aerobic conditions this strain used acetate, fumarate, lactate, pyruvate, crotonate, indole, glucose, vanillate, 4-hydroxybenzoate, -cresol, -cresol and -cresol. Under denitrifying conditions the strain used cyclohexanol, cyclohexanone, 1,3-cyclohexanedione, 2-cyclohexenone, 1,3-cyclohexanediol ( and ), monocarboxylic acids (C–C), adipate, pimelate, 5-oxocaproate, citrate, 2-oxoglutarate, succinate, malate, crotonate, lactate, pyruvate and fumarate. Cells were short rods, 0·6 μm wide and 1–2 μm long, motile, non-spore-forming, Gram-negative, and catalase- and oxidase-positive. Strain K601 used nitrate, nitrite and oxygen as electron acceptors, but not sulfate, sulfite or fumarate. The DNA G+C content of strain K601 was 66 mol%. Phylogenetic analysis, based on 16S rDNA sequencing, showed that strain K601 represents a separate lineage of the family in the β-subclass of . Based on the high 16S rDNA sequence divergence and phenotypic characteristics, the name gen. nov., sp. nov. is proposed for this strain. The type strain is K601 (=DSM 14773 =CIP 107495).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02276-0
2003-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530147.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02276-0&mimeType=html&fmt=ahah

References

  1. Blümel S., Busse H. J., Stolz A., Kämpfer P. 2001; Xenophilus azovorans gen. nov., sp. nov. a soil bacterium that is able to degrade azo dyes of the Orange II type. Int J Syst Evol Microbiol 511831–1837 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Dangel W., Tschech A., Fuchs G. 1988; Anaerobic metabolism of cyclohexanol by denitrifying bacteria. Arch Microbiol 150:358–362 [CrossRef]
    [Google Scholar]
  4. Dangel W., Tschech A., Fuchs G. 1989; Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species. Arch Microbiol 152:273–279 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  7. Donoghue N. A., Trudgill P. W. 1975; The metabolism of cyclohexanol by Acinetobacter NCIB9871. Eur J Biochem 61:1–7
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Evans W. C. 1977; Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270:17–22 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.51c Seattle: Department of Genetics, University of Washington;
    [Google Scholar]
  11. Foss S., Harder J. 1998; Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) and nitrate. Syst Appl Microbiol 21:365–373 [CrossRef]
    [Google Scholar]
  12. Foss S., Heyen U., Harder J. 1998; Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes [(+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene] and nitrate. Syst Appl Microbiol 21:237–244 [CrossRef]
    [Google Scholar]
  13. Huss V. A. R., Festel H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  15. Jahnke K.-D., Bahnweg G. 1986; Assessing natural relationships in the basidiomycetes by DNA analysis. Trans Br Mycol Soc 87:175–191 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Parker C. T. Jr11 other authors 1999; A new version of the RDP (Ribosomal Database Project. Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell, fatty acids methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  20. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring shaped, vitamin B12-requiring member of the Rhodospirillaceae . Int J Syst Bacteriol 28:283–288 [CrossRef]
    [Google Scholar]
  21. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  22. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetcally coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 37:52–59 [CrossRef]
    [Google Scholar]
  25. Tanaka H., Obata H., Tokuyama T., Ueono T., Yoshisako F., Nishmora A. 1977; Metabolism of cyclohexanol by Pseudomonas species. Hakkokogaku kaishi 55:62–67
    [Google Scholar]
  26. Trower M. K., Buckland M., Higgins R., Griffing M. 1985; Isolation of cyclohexane-metabolizing Xanthobacter sp. Appl Environ Microbiol 49:1282–1289
    [Google Scholar]
  27. Trudgill P. W. 1984; Microbial degradation of the alicyclic ring. In Microbial Degradation of Organic Compounds pp 131–175Edited by Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  28. Tschech A., Fuchs G. 1987; Anaerobic degradation of phenol by pure culture of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217 [CrossRef]
    [Google Scholar]
  29. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [CrossRef]
    [Google Scholar]
  30. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al 1987 gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576 [CrossRef]
    [Google Scholar]
  31. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  32. Willems A., Busse J., Goor M.8 other authors 1989; Hydrogenophaga , a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii ), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘ Pseudomonas carboxydoflava ’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis . Int J Syst Bacteriol 39:319–333 [CrossRef]
    [Google Scholar]
  33. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae , a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450 [CrossRef]
    [Google Scholar]
  34. Willems A., De Vos P., De Ley J. 1992; The genus Comamonas . In The Prokaryotes , 2nd edn. vol 3 pp 2583–2590Edited by Balows A., Trüper H. G., Dworkin M., Harder K.-H., Schleifer W. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02276-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02276-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error