1887

Abstract

A novel heterotrophic, yellow-orange-pigmented, non-motile, asporogenic, strictly aerobic, Gram-negative, oxidase and catalase-positive bacterium KMM 3516 was isolated from the holothurian collected from Troitsa Bay in the Gulf of Peter the Great (Sea of Japan) during November 1997. 16S rDNA sequence analysis revealed that strain KMM 3516 was a member of the family . The DNA G+C content of KMM 3516 was 41·3 mol%. Major respiratory quinone was MK-6. Predominant fatty acids were i15 : 0 and 15 : 0 (68·8 and 8·4 %, respectively). On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacterium has been designated gen. nov., sp. nov. The type strain is KMM 3516 (=NBRC 16718).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02302-0
2003-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531281.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02302-0&mimeType=html&fmt=ahah

References

  1. Barbeyron T., Michel G., Potin P., Henrissat B., Kloareg B. 2000; ι -Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ -carrageenases. J Biol Chem 275:35499–35505 [CrossRef]
    [Google Scholar]
  2. Barbeyron T., L'Haridon S., Corre E., Kloareg B., Potin P. 2001; Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga ] uliginosa (Zobell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51985–997 [CrossRef]
    [Google Scholar]
  3. Bernardet J.-F., Grimont P. A. D. 1989; Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev. and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int J Syst Bacteriol 39346–354 [CrossRef]
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (Zobell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Brown J. L., Nichols P. D., McMeekin T. A. 1997; Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov. psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A. 1998; Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense . (Dobson et al. 1993) as Psychroflexus gondwanense sp. nov., comb. nov. Microbiology 1441601–1609 [CrossRef]
    [Google Scholar]
  7. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov. a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 511997–2006 [CrossRef]
    [Google Scholar]
  8. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43:77–83 [CrossRef]
    [Google Scholar]
  9. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1995 (PHYLIP Phylogeny Inference Package) version 3.57c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, Pirgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov. gas vacuolate polar marine bacteria of the Cytophaga Flavobacterium Bacteroides group and reclassification of ‘ Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [CrossRef]
    [Google Scholar]
  12. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  13. Humphry D. R., George A., Black G. W., Cummings S. P. 2001; Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243
    [Google Scholar]
  14. Ivanova E. P., Nedashkovskaya O. I., Chun J.7 other authors 2001; Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 51:1987–1995 [CrossRef]
    [Google Scholar]
  15. Johansen J. E., Nielsen P., Sjøholm C. 1999; Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [ Cytophaga ] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol 491231–1240 [CrossRef]
    [Google Scholar]
  16. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  18. Lemos M. L., Toranzo A. E., Barja J. L. 1985; Modified medium for oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 40:1541–1543
    [Google Scholar]
  19. Männistö M., Puhakka J. 2001; Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria. Arch Microbiol 177:41–46 [CrossRef]
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  21. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  22. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev., and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 501055–1063 [CrossRef]
    [Google Scholar]
  23. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  24. Politz O., Krah M., Thomsen K. K., Borriss R. 2000; A highly thermostable endo-(1,4)- β -mannanase from the marine bacterium Rhodothermus marinus . Appl Microbiol Biothechnol 53:715–721 [CrossRef]
    [Google Scholar]
  25. Reichenbach H. 1989; The order Cytophagales Leadbetter 1974, 99AL. In Bergey's Manual of Systematic Bacteriology vol 3 pp 2011–2073Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. C. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Reichenbach H. 1992; The order Cytophagales . In The Prokaryotes vol 4 pp 3631–3675Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  30. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V. 1995; Cellular fatty acid of Alteromonas species. Syst Appl Microbiol 18:37–43 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  32. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44827–831 [CrossRef]
    [Google Scholar]
  33. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T., De Wachter R. 2000; The European Small Subunit Ribosomal RNA database. Nucleic Acids Res 28:175–176 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02302-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02302-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error