1887

Abstract

A bacterium previously isolated from a diseased colony of the scleractinian coral (common name elliptical star coral) was subjected to a detailed polyphasic taxonomic characterization. The isolate, designated WP1, was halophilic and strictly aerobic and formed golden-orange-pigmented colonies after prolonged incubation. Cells of WP1 were Gram-negative, rod-shaped and showed a characteristic branching rod morphology. Chemotaxonomically, WP1 was characterized by having Q-10 as the major respiratory lipoquinone and -homospermidine as the main component of the cellular polyamine content. The predominant constituent in the cellular fatty acid profile was C 7, along with C cyclo 8 and C. Other fatty acids present in smaller amounts were C, C, C 7, C 7 and C 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. Minor amounts of diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidyldimethylethanolamine were present. The G+C content of the genomic DNA was 66·3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence showed that WP1 represents a separate subline of descent within the order ‘’ of the ‘’. The new line of descent falls within the group of families that includes the , , and ‘’, with no particular relative within this group. The 16S rRNA gene sequence similarity to all established taxa within this group was not higher than 92·0 % (to ). To accommodate this emerging coral pathogen, the creation of a new genus and species is proposed, gen. nov., sp. nov. (type strain WP1=CIP 107386 =DSM 14790).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02359-0
2003-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531115.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02359-0&mimeType=html&fmt=ahah

References

  1. Abeliovich A., Azov Y. 1976; Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41:223–228 [CrossRef]
    [Google Scholar]
  4. Banin E., Khare S. K., Naider F., Rosenberg E. 2001; Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol 67:1536–1541 [CrossRef]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  6. Boone D. R., Castenholz R. W., Garrity G. M.editors 2001 Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 The Archaea and the Deeply Branching and Phototrophic Bacteria New York, Berlin & Heidelberg: Springer;
    [Google Scholar]
  7. Bunn C. R., Elkan G. H. 1970; The phospholipid composition of Rhizobium japonicum . Can J Microbiol 17:291–295
    [Google Scholar]
  8. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  9. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  10. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  11. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  12. Caspi R., Haygood M. G., Tebo B. M. 1996; Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology 142:2549–2559 [CrossRef]
    [Google Scholar]
  13. Choma A., Komaniecka I. 2002; Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 25:326–331 [CrossRef]
    [Google Scholar]
  14. Cohen D. E., Cohen W. S., Bertsch W. 1975; Inhibition of photosystem II by uncouplers at alkaline pH and its reversal by artificial electron donors. Biochim Biophys Acta 376:97–104 [CrossRef]
    [Google Scholar]
  15. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  16. Denner E. B. M., Mark B., Busse H.-J., Turkiewicz T., Lubitz W. 2001; Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53 [CrossRef]
    [Google Scholar]
  17. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  18. Dunfield K. E., Xavier L. J. C., Germida J. J. 1999; Identification of Rhizobium leguminosarum and Rhizobium sp. ( Cicer ) strains using a custom fatty acid methyl ester (FAME) profile library. J Appl Microbiol 86:78–86 [CrossRef]
    [Google Scholar]
  19. Dustan P. 1977; Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. Environ Geol 2:51–58 [CrossRef]
    [Google Scholar]
  20. Faizova G. K., Borodulina Y. S., Samsonova S. P. 1971; Lipids of the nodule bacteria Rhizobium leguminosarum . Microbiology (English translation of Mikrobiologiya 40:411–413
    [Google Scholar]
  21. Felsenstein J. 1995 phylip – phylogeny inference package (version 3.57c). Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  22. Fritsche K., Auling G., Andreesen J. R., Lechner U. 1999; Defluvibacter lusatiae gen. nov., sp. nov. a new chlorophenol-degrading member of the α -2 subgroup of Proteobacteria . Syst Appl Microbiol 22:197–204 [CrossRef]
    [Google Scholar]
  23. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey ' s Manual of Systematic Bacteriology . , 2nd edn. vol 1 pp 119–166Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York, Berlin & Heidelberg: Springer;
  24. Goldfine H., Ellis M. E. 1964; N -Methyl groups in bacterial lipids. J Bacteriol 87:8–15
    [Google Scholar]
  25. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  26. Hamana K., Matsuzaki S. 1992; Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283 [CrossRef]
    [Google Scholar]
  27. Hamana K., Takeuchi M. 1998; Polyamine profiles as chemotaxonomic marker within the alpha, beta, delta, and epsilon subclasses of class Proteobacteria : distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14:1–14
    [Google Scholar]
  28. Holt J. G., Krieg N. R., Sneath P. A. H., Staley J. T., Williams S. T.editors 1994 Bergey' s Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Jarvis B. D. W., Sivakumaran S., Tighe S. W., Gillis M. 1996; Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158 [CrossRef]
    [Google Scholar]
  30. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  31. Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H.-J., Osborn A. M., Stolz A. 1999; Description of Pseudaminobacter gen. nov. with two species Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49:887–897 [CrossRef]
    [Google Scholar]
  32. Kaneshiro T., Marr A. G. 1962; Phospholipids of Azotobacter agilis , Agrobacterium tumefaciens and Escherichia coli . J Lipid Res 3:184–189
    [Google Scholar]
  33. Kaye J. Z., Baross J. A. 2000; High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol 32:249–260 [CrossRef]
    [Google Scholar]
  34. Kulikov V. I., Dranovskaia E. A. 1988; Phospholipids of Brucella genus. Mol Gen Microbiol Virusol 9:17–21
    [Google Scholar]
  35. Kushmaro A., Banin E., Loya Y., Stackebrandt E., Rosenberg E. 2001; Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica . Int J Syst Evol Microbiol 51:1383–1388
    [Google Scholar]
  36. Lechner U., Baumbach R., Becker D., Kitunen V., Auling G., Salkinoja-Salonen M. 1995; Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92 [CrossRef]
    [Google Scholar]
  37. Mergaert J., Verhelst A., Cnockaert M. C., Tan T. L., Swings J. 2001; Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107 [CrossRef]
    [Google Scholar]
  38. Mergaert J., Cnockaert M. C., Swings J. 2002; Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum ) emend. Int J Syst Evol Microbiol 52:1821–1823 [CrossRef]
    [Google Scholar]
  39. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  40. Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H. 1990; Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria . J Bacteriol 172:3569–3576
    [Google Scholar]
  41. Olson J. B., Harmody D. K., McCarthy P. J. 2002; α - Proteobacteria cultivated from marine sponges display branching rod morphology. FEMS Microbiol Lett 211:169–173
    [Google Scholar]
  42. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  43. Pearson W. R. 1990; Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183:63–98
    [Google Scholar]
  44. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  45. Richardson L. L., Goldberg W. M., Kuta K. G. 1998a; Florida's mystery coral-killer identified. Nature 392:557–558 [CrossRef]
    [Google Scholar]
  46. Richardson L. L., Goldberg W. M., Carlton R. G., Halas J. C. 1998b; Coral disease outbreak in the Florida Keys: plague type II. Rev Biol Trop 46:Suppl. 5187–198
    [Google Scholar]
  47. Rowe G. E., Welch R. A. 1994; Assays of hemolytic toxins. Methods Enzymol 235:657–667
    [Google Scholar]
  48. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  49. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc;
    [Google Scholar]
  50. Schmidt K., Connor A., Britton G. 1994; Analysis of pigments: carotenoids and related polyenes. In Chemical Methods in Prokaryotic Systematics pp 403–461Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  51. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Woods W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  52. Smith G. W., Hayasaka S. S. 1982; Nitrogenase activity of bacteria associated with Halodule wrightii roots. Appl Environ Microbiol 43:1244–1248
    [Google Scholar]
  53. Smith F. A., Raven J. A. 1979; Intercellular pH and its regulation. Annu Rev Plant Physiol 30:289–311 [CrossRef]
    [Google Scholar]
  54. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  55. Thiele O. W., Schwinn G. 1973; The free lipids of Brucella melitensis and Bordetella pertussis . Eur J Biochem 34:333–344 [CrossRef]
    [Google Scholar]
  56. Thiele O. W., Busse D., Hoffmann K. 1968; Free lipids from Brucella abortus Bang. 4. Nature of the phosphatides and their fatty acid composition. Eur J Biochem 24:513–519
    [Google Scholar]
  57. Thompson E. A., Kaufman A. E., Johnston N. C., Goldfine H. 1983; Phospholipids of Rhizobium meliloti and Agrobacterium tumefaciens : lack of effect of Ti plasmid. Lipids 18:602–606 [CrossRef]
    [Google Scholar]
  58. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium , Bradyrhizobium , Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  59. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  60. Velthuys B. R. 1980; Mechanisms of electron flow in photosystem II and towards photosystem I. Annu Rev Plant Physiol 31:545–567 [CrossRef]
    [Google Scholar]
  61. Warren K. S. 1961; Ammonia toxicity and pH. Nature 195:47–49
    [Google Scholar]
  62. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol 1 pp 299–487 New York: Academic Press;
    [Google Scholar]
  63. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  64. Yurkov V. V., Beatty J. T. 1998; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02359-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02359-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error