1887

Abstract

A novel strictly anaerobic, cellobiose-degrading bacterium, strain Cello, was isolated from a human faecal sample by combining enrichments in liquid and soft-agar basal media. A noteworthy characteristic was its inability to grow on normal agar plates and in roll tubes. The cells were coccus shaped and non-motile, with an extracellular slime layer. Growth of strain Cello occurred between 20 and 40 °C, with optimal growth at 37 °C. The pH range for growth was 5–7·5 with an optimum at 6·5. In pure culture, strain Cello could only grow on a variety of sugars. Glucose was converted to acetate, ethanol and H. The doubling time on glucose was 0·5 h. In a syntrophic co-culture with strain JF-1, strain Cello converted glucose to acetate and H. The G+C content was 59·2 mol%. 16S rDNA analysis revealed that the closest relatives of strain Cello were two uncultured bacteria from anaerobic digesters, both with 94 % 16S rDNA sequence similarity. The closest cultured representatives belong to genera of the bacterial division ‘’. The name gen. nov., sp. nov. is proposed for strain Cello (=DSM 14823 =ATCC BAA-548).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02362-0
2003-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530211.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02362-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Bry L., Falk P. G., Midtvedt T., Gordon J. I. 1996; A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1381–1383
    [Google Scholar]
  3. Chin K.-J., Liesack W., Janssen P. H. 2001; Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘ Verrucomicrobia ’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968 [CrossRef]
    [Google Scholar]
  4. Cole R. M., Popkin T. J. 1981; Electron microscopy. In Manual of Methods for General Bacteriology pp 34–51Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hedlund B. P., Gosink J. J., Staley J. T. 1996; Phylogeny of Prosthecobacter , the fusiform caulobacters: members of a recently discovered division of Bacteria . Int J Syst Bacteriol 46:960–966 [CrossRef]
    [Google Scholar]
  6. Hedlund B. P., Gosink J. J., Staley J. T. 1997; Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter . Antonie van Leeuwenhoek 72:29–38 [CrossRef]
    [Google Scholar]
  7. Hooper L. V., Xu J., Falk P. G., Midtvedt T., Gordon J. I. 1999; A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96:9833–9838 [CrossRef]
    [Google Scholar]
  8. Hooper L. V., Wong M. H., Thelin A., Hansson L., Falk P. G., Gordon J. I. 2000; Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884
    [Google Scholar]
  9. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  10. Janssen P. H., Schuhmann A., Mörschel E., Rainey F. A. 1997; Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388
    [Google Scholar]
  11. Kamlage B., Hartmann L., Gruhl B., Blaut M. 1999; Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129:2212–2217
    [Google Scholar]
  12. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H., Welling G. W. 1995; Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075
    [Google Scholar]
  13. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  14. McFarlane G. T., Gibson G. R. 1994; Metabolic activities of the normal colonic microflora. In Human Health: Contribution of Microorganisms pp 17–38Edited by Gibson S. A. W. Frankfurt: Springer;
    [Google Scholar]
  15. Plugge C. M., Zoetendal E. G., Stams A. J. M. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50:1155–1162 [CrossRef]
    [Google Scholar]
  16. Plugge C. M., Balk M., Zoetendal E. G., Stams A. J. M. 2002; Gelria glutamica gen. nov. sp. nov. a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52:401–407
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44,846–849 [CrossRef]
    [Google Scholar]
  19. Stams A. J. M., van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  20. Strunk O., Ludwig W. 1995 arb – a software environment for sequence data Department of Microbiology, Technical University of Munich; Munich, Germany: http://www.mikro.biologie.tu-muenchen.de/pub/ARB/documentation/arb.ps
    [Google Scholar]
  21. Suau A., Bonnet R., Sutren M., Godon J.-J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  22. Wilson K. H., Blitchington R. B. 1996; Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278
    [Google Scholar]
  23. Zoetendal E. G., Akkermans A. D. L., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
  24. Zoetendal E. G., Akkermans A. D. L., Akkermans-van Vliet W. M., de Visser J. A. G. M., de Vos W. M. 2001; The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02362-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02362-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error