1887

Abstract

A strictly thermophilic anaerobe, designated strain VF08, was isolated from a water sample collected from a Great Artesian Basin bore (registered bore number 22981) situated at Mitchell, QLD, Australia. Cells of isolate VF08 were slightly curved, non-sporulating rods (1.5–3.5×0.4–0.8 μm), which stained Gram-negative but possessed a Gram-positive cell-wall ultrastructure. The strain grew optimally in tryptone-yeast extract-glucose (TYEG) medium at 55 °C (temperature growth range between 37 and 60 °C) and a pH of 7 (pH growth range, 6.0–9.0). Yeast extract or tryptone was required for growth on glucose, fructose, xylose, maltose, sucrose, raffinose, cellobiose, ribose, pyruvate, tryptone, peptone, Casamino acids, amyl media and serine, but could also support growth as the sole carbon source. End products from glucose fermentation were acetate, ethanol, CO and H. The strain reduced vanadium(V), but not iron(III), manganese(IV), elemental sulfur, sulfate, thiosulfate, sulfite, nitrate or nitrite in the presence of 0.2 % yeast extract, peptone, tryptone, glucose, sucrose and Casamino acids, but an increase in the growth rate or cell yield was not observed. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and ≥2 % NaCl (w/v). The G+C content of the DNA was 38.4±0.8 mol% as determined by the thermal denaturation ( ) method. 16S rRNA gene sequence analysis revealed that isolate VF08 was a member of the genus with and (formerly ) being the closest relatives with similarity values of 85.0 and 86.1 %, respectively, when helix 6 nucleotides were included in the analysis, and 95.2 % and 94 %, respectively, when these nucleotides were masked from the analysis. Further analysis revealed that strain VF08 formed an individual cluster (cluster II) within the genus and could be distinguished from other species within the genus (clusters I, III and IV) on the basis of signature nucleotides and differences in phenotypic traits. These data suggest that strain VF08 is a novel species of the genus , for which the name sp. nov. is proposed. The type strain is VF08 (=JCM 15828=KCTC 5735). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023655-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/644.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023655-0&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  2. Baena S., Patel B. K. C. 2009; Genus Caloramator . In Bergey's Manual of Systematic Bacteriology vol 3 pp 834–838 Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. New York: Springer-Verlag;
    [Google Scholar]
  3. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n. a nonsporulating extreme thermophile. J Bacteriol 98:289–297
    [Google Scholar]
  4. Brown D. P., Ganova-Raeva L., Green B. D., Wilkinson S. R., Young M., Youngman P. 1994; Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Mol Microbiol 14:411–426 [CrossRef]
    [Google Scholar]
  5. Carpentier W., Sandra K., De Smet I., Brigé A., De Smet L., Van Beeumen J. 2003; Microbial reduction and precipitation of vanadium by Shewanella oneidensis . Appl Environ Microbiol 69:3636–3639 [CrossRef]
    [Google Scholar]
  6. Chrisostomos S., Patel B. K. C., Dwivedi P. P., Denman S. E. 1996; Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46:497–501 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  8. Engle M., Li Y., Rainey F. A., DeBlois S., Mai V., Reichert A., Mayer F., Messner P., Wiegel J. 1996; Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033 [CrossRef]
    [Google Scholar]
  9. Greenberg A. E., Clesceri L. S., Eaton A. D. 1992 Estimation of bacterial density. In Standard methods for the examination of water and waste water pp 49–50 Washington, D.C: Am Public Health Assn;
    [Google Scholar]
  10. Habermehl M. A. 1980; The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38
    [Google Scholar]
  11. Kanso S., Patel B. K. C. 2003; Microvirga subterranea gen. nov., sp. nov. a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53401–406 [CrossRef]
    [Google Scholar]
  12. Kanso S., Greene A. C., Patel B. K. C. 2002; Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874 [CrossRef]
    [Google Scholar]
  13. Kimura H., Sugihara M., Yamamoto H., Patel B. K. C., Kato K., Hanada S. 2005; Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9:407–414 [CrossRef]
    [Google Scholar]
  14. Ledbetter R. N., Connon S. A., Neal A. L., Dohnalkova A., Magnuson T. S. 2007; Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon. Appl Environ Microbiol 73:5928–5936 [CrossRef]
    [Google Scholar]
  15. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum , sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251 [CrossRef]
    [Google Scholar]
  16. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  17. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  18. Lyalkova N. N., Yurkova N. A. 1992; Role of microorganisms in vanadium concentration and dispersion. Geomicrobiol J 10:15–26 [CrossRef]
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  20. Neefs J.-M., Van de Peer Y., De Rijk P., Chapelle S., De Wachter R. 1993; Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049 [CrossRef]
    [Google Scholar]
  21. Ogg C. D., Patel B. K. C. 2009a; Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:95–101 [CrossRef]
    [Google Scholar]
  22. Ogg C. D., Patel B. K. C. 2009b; Thermotalea metallivorans gen. nov., sp. nov. a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59964–971 [CrossRef]
    [Google Scholar]
  23. Ogg C. D., Patel B. K. C. 2009c; Fervidicola ferrireducens gen. nov., sp. nov. a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 591100–1107 [CrossRef]
    [Google Scholar]
  24. Ogg C. D., Patel B. K. C. 2009d; Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:2848–2853 [CrossRef]
    [Google Scholar]
  25. Ogg C. D., Greene A. C., Patel B. K. C. 2010; Thermovenabulum gondwanense sp. nov., a thermophilic anaerobic Fe(III)-reducing bacterium isolated from microbial mats thriving in a Great Artesian Basin bore runoff channel. Int J Syst Evol Microbiol 60:1079–1084 [CrossRef]
    [Google Scholar]
  26. Onyenwoke R. U., Brill J. A., Farahi K., Wiegel J. 2004; Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes. Arch Microbiol 182:182–192
    [Google Scholar]
  27. Ortiz-Bernad I., Anderson R. T., Vrionis H. A., Lovley D. R. 2004; Vanadium respiration by Geobacter metallireducens : novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095 [CrossRef]
    [Google Scholar]
  28. Patel B. K. C., Morgan H. W., Daniel R. M. 1985a; A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7:277–278 [CrossRef]
    [Google Scholar]
  29. Patel B. K. C., Morgan H. W., Daniel R. M. 1985b; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69 [CrossRef]
    [Google Scholar]
  30. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M. 1987; Clostridium fervidus sp. nov., a new chemorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37:123–126 [CrossRef]
    [Google Scholar]
  31. Plugge C. M., Zoetendal E. G., Stams A. J. M. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50:1155–1162 [CrossRef]
    [Google Scholar]
  32. Ramamoorthy S., Sass H., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F. 2006; Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736 [CrossRef]
    [Google Scholar]
  33. Redburn A. C., Patel B. K. C. 1994; Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115:33–38 [CrossRef]
    [Google Scholar]
  34. Rehder D. 1992; Structure and function of vanadium compounds in living organisms. Biometals 5:3–12 [CrossRef]
    [Google Scholar]
  35. Seyfried M., Lyon D., Rainey F. A., Wiegel J. 2002; Caloramator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. Int J Syst Evol Microbiol 52:1177–1184 [CrossRef]
    [Google Scholar]
  36. Sørensen J. 1982; Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43:319–324
    [Google Scholar]
  37. Spanevello M. D. 2001 The phylogeny of prokaryotes associated with Australia's Great Artesian Basin PhD thesis School of Biomolecular and Physical Science, Griffith University; Brisbane, Australia:
  38. Spanevello M. D., Yamamoto H., Patel B. K. C. 2002; Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter . Int J Syst Evol Microbiol 52:795–800 [CrossRef]
    [Google Scholar]
  39. Spratt H. G. Jr, Siekmann E. C., Hodson R. E. 1994; Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38:91–112 [CrossRef]
    [Google Scholar]
  40. Tarlera S., Muxí L., Soubes M., Stams A. J. M. 1997; Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656 [CrossRef]
    [Google Scholar]
  41. Wiegel J. 2009; Genus XI Thermobrachium . In Bergey's Manual of Systematic Bacteriology vol 3p–848 Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. New York: Springer-Verlag;
    [Google Scholar]
  42. Winker S., Woese C. R. 1991; A definition of the domains Archaea , Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [CrossRef]
    [Google Scholar]
  43. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  44. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023655-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023655-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error