1887

Abstract

Heterotrophic bacteria were isolated from a water sample taken from the North Sea, 2 km off the coast of the island of Helgoland, by direct plating of the serially diluted sample on complex marine media. Sixteen of 80 strains from the highest sample dilution belonged to the ‘’ group within the -subclass of the on the basis of partial 16S rDNA sequence analysis. Phylogenetic analysis of nearly complete 16S rDNA sequences showed that the closest relative of two strains, Hel 10 and Hel 26, was (94·4 % similarity). These strains were Gram-negative, non-motile rods, obligate aerobes, required sodium ions and 1–7 % sea salts for growth and did not produce bacteriochlorophyll. Their optimal growth temperature was 25–30 °C. The strains had Q-10 as the dominant respiratory quinone. Chemotaxonomic analysis showed a combination of ester-linked 3-OH 10 : 0, 12 : 1 and amide-linked 3-oxo 14 : 0 (or 3-OH 14 : 1) and 3-OH 14 : 0 fatty acids, which appears to be a unique feature of strains Hel 10 and Hel 26 within this subsection of the -subclass of the . Based on 16S rDNA sequence analysis and chemotaxonomic data, the strains are assigned to a new genus and species, gen. nov., sp. nov., with the type strain Hel 10 (=DSM 14858=NCIMB 13941).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02377-0
2003-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530731.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02377-0&mimeType=html&fmt=ahah

References

  1. Ansede J. H., Friedman R., Yoch D. C. 2001; Phylogenetic analysis of culturable dimethyl sulfide-producing bacteria from a spartina-dominated salt marsh and estuarine water. Appl Environ Microbiol 67:1210–1217 [CrossRef]
    [Google Scholar]
  2. Ashen J. B., Goff L. J. 2000; Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl Environ Microbiol 66:3024–3030 [CrossRef]
    [Google Scholar]
  3. Barbieri E., Paster B. J., Hughes D., Zurek L., Moser D. P., Teske A., Sogin M. L. 2001; Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167 [CrossRef]
    [Google Scholar]
  4. Boettcher K. J., Barber B. J., Singer J. T. 2000; Additional evidence that juvenile oyster disease is caused by a member of the Roseobacter group and colonization of nonaffected animals by Stappia stellulata -like strains. Appl Environ Microbiol 66:3924–3930 [CrossRef]
    [Google Scholar]
  5. Brinkmeyer R., Rappé M., Gallacher S., Medlin L. 2000; Development of clade- ( Roseobacter and Alteromonas ) and taxon-specific oligonucleotide probes to study interactions between toxic dinoflagellates and their associated bacteria. Eur J Phycol 35:315–329 [CrossRef]
    [Google Scholar]
  6. Buchan A., Collier L. S., Neidle E. L., Moran M. A. 2000; Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672 [CrossRef]
    [Google Scholar]
  7. Candela M., Zaccherini E., Zannoni D. 2001; Respiratory electron transport and light-induced energy transduction in membranes from the aerobic photosynthetic bacterium Roseobacter denitrificans . Arch Microbiol 175:168–177 [CrossRef]
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA . Anal Biochem. 81461–466 [CrossRef]
  9. Dang H., Lovell C. R. 2000; Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475 [CrossRef]
    [Google Scholar]
  10. DeSoete G. 1983; A least squares algorithm for setting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  11. Eilers H., Pernthaler J., Glöckner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  12. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R. 2001; Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142 [CrossRef]
    [Google Scholar]
  13. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1993 phylip (phylogenetic inference package) version 3.5.1. Distributed by the author Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips R. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Gilmour J. S. L. 1940; Taxonomy and philosophy. In The New Systematics pp 461–474Edited by Huxley J. London: Systematics Association;
    [Google Scholar]
  17. Gonzalez J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  18. Gonzalez J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov. sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780 [CrossRef]
    [Google Scholar]
  19. Gonzalez J. M., Kiene R. P., Moran M. A. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819
    [Google Scholar]
  20. Gonzalez J. M., Simo R., Massana R., Covert J. S., Casamayor E. O., Pedros-Alio C., Moran M. A. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [CrossRef]
    [Google Scholar]
  21. Gordon R. E., Haynes W. C., Pang C. H. 1973; The Genus Bacillus . Agricultural Handbook 427: Washington, DC: US Department of Agriculture;
    [Google Scholar]
  22. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus sp. nov. nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365 [CrossRef]
    [Google Scholar]
  23. Grigioni S., Boucher-Rodoni R., Demarta A., Tonolla M., Peduzzi R. 2000; Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda). Mar Biol 136:217–222 [CrossRef]
    [Google Scholar]
  24. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., DeMarco P., Kenna E. M., Murrell J. C. 1997; Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov. sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 16746–53 [CrossRef]
    [Google Scholar]
  25. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  26. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from a GILFORD System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  27. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  28. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov. sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  29. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  30. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis . sp. nov., α -3 Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  31. Lafay B., Ruimy R., Rausch de Traubenberg C., Breittmayer V., Gauthier M. J., Christen R. 1995; Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima . Int J Syst Bacteriol 45:290–296 [CrossRef]
    [Google Scholar]
  32. Lane D. J. 1991; 16S–23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 125–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  33. Lányi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  34. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  35. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  36. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov., sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  37. Prokic I., Brümmer F., Brigge T., Görtz H. D., Gerdts G., Schütt C., Elbrächter M., Müller W. E. G. 1998; Bacteria of the genus Roseobacter associated with the toxic dinoflagellate Prorocentrum lima . Protist 149:347–357 [CrossRef]
    [Google Scholar]
  38. Pukall R., Brambilla E., Stackebrandt E. 1998; Automated fragment length analysis of fluorescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Microbiol Methods 32:55–64 [CrossRef]
    [Google Scholar]
  39. Pukall R., Päuker O., Buntefuß D., Ulrichs G., Lebaron P., Bernard L., Guindulain T., Vives-Rego J., Stackebrandt E. 1999a; High sequence diversity of Alteromonas macleodii -related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microbiol Ecol 28:335–344 [CrossRef]
    [Google Scholar]
  40. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L., Stackebrandt E. 1999b; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  41. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  42. Rappé M. S., Vergin K., Giovannoni S. J. 2000; Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232 [CrossRef]
    [Google Scholar]
  43. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E. 1999; Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49:795–802 [CrossRef]
    [Google Scholar]
  44. Ruiz-Ponte C., Cilia V., Lambert C., Nicolas J. L. 1998; Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . Int J Syst Bacteriol 48:537–542 [CrossRef]
    [Google Scholar]
  45. Ruiz-Ponte C., Samain J. F., Sanchez J. L., Nicolas J. L. 1999; The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 1:52–59 [CrossRef]
    [Google Scholar]
  46. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  47. Söller R., Hirsch P., Blohm D., Labrenz M. 2000; Differentiation of newly described Antarctic bacterial isolates related to Roseobacter species based on 16S–23S rDNA internal transcribed spacer sequences. Int J Syst Evol Microbiol 50:909–915 [CrossRef]
    [Google Scholar]
  48. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov. sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology (English translation of Mikrobiologiya ) 64:295–305
    [Google Scholar]
  49. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  50. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  51. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 2000; Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156 [CrossRef]
    [Google Scholar]
  52. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  53. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  54. Tindall B. J. 1994; Chemical analysis of archaea and bacteria: a critical evaluation of its use in taxonomy and identification. In Bacterial Diversity and SystematicsFEMS Symposium no 75 pp 243–258Edited by Priest F. G., Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  55. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov. Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44201–210 [CrossRef]
    [Google Scholar]
  56. Uphoff H. U., Felske A., Fehr W., Wagner-Döbler I. 2001; The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiol Ecol 35:249–258 [CrossRef]
    [Google Scholar]
  57. Urbance J. W., Bratina B. J., Stoddard S. F., Schmidt T. M. 2001; Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov. which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070 [CrossRef]
    [Google Scholar]
  58. Weidner S., Arnold W., Stackebrandt E., Pühler A. 2000; Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microb Ecol 39:22–31 [CrossRef]
    [Google Scholar]
  59. Yurkov V. V., Beatty J. T. 1998a; Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
  60. Yurkov V., Beatty J. T. 1998b; Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341
    [Google Scholar]
  61. Yurkov V., Stackebrandt E., Holmes A.7 other authors 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a -containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434 [CrossRef]
    [Google Scholar]
  62. Zubkov M. V., Fuchs B. M., Burkill P. H., Amann R. 2001a; Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microbiol 67:5210–5218 [CrossRef]
    [Google Scholar]
  63. Zubkov M. V., Fuchs B. M., Archer S. D., Kiene R. P., Amann R., Burkill P. H. 2001b; Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02377-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02377-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

IMAGE

Supplementary material 2

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error