1887

Abstract

An anaerobic, halorespiring bacterium (strain PCE-M2=DSM 13726=ATCC BAA-583) able to reduce tetrachloroethene to -dichloroethene was isolated from an anaerobic soil polluted with chlorinated aliphatic compounds. The isolate is assigned to the genus as a novel species, sp. nov. Furthermore, on the basis of all available data, a related organism, DSM 12446, is reclassified to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02417-0
2003-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530787.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02417-0&mimeType=html&fmt=ahah

References

  1. Boschker H. T. S., de Brouwer J. F. C., Cappenberg T. E. 1999; The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319 [CrossRef]
    [Google Scholar]
  2. Bouwer E. J., McCarty P. L. 1983; Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. de Bruin W. P., Kotterman M. J. J., Posthumus M. A., Schraa G., Zehnder A. J. B. 1992; Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. DiStefano T. D., Gossett J. M., Zinder S. H. 1991; Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57:2287–2292
    [Google Scholar]
  7. El Fantroussi S., Naveau H., Agathos S. N. 1998; Anaerobic dechlorinating bacteria. Biotechnol Prog 14:167–188 [CrossRef]
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Fathepure B. Z., Nengu J. P., Boyd S. A. 1987; Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53:2671–2674
    [Google Scholar]
  10. Finster K., Liesack W., Tindall B. J. 1997; Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217 [CrossRef]
    [Google Scholar]
  11. Freedman D. L., Gossett J. M. 1989; Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151
    [Google Scholar]
  12. Gerritse J., Renard V., Pedro Gomes T. M., Lawson P. A., Collins M. D., Gottschal J. C. 1996; Desulfitobacterium sp. strain PCE1, anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho -chlorinated phenols. Arch Microbiol 165:132–140 [CrossRef]
    [Google Scholar]
  13. Gerritse J., Drzyzga O., Kloetstra G., Keijmel M., Wiersum L. P., Hutson R., Collins M. D., Gottschal J. C. 1999; Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221
    [Google Scholar]
  14. Holliger C., Schraa G., Stams A. J. M., Zehnder A. J. B. 1993; A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997
    [Google Scholar]
  15. Holliger C., Wohlfahrt G., Diekert G. 1998; Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398 [CrossRef]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  19. Laverman A. M., Switzer Blum J., Shaefer J. K., Philips E. J. P., Lovley D. R., Oremland R. S. 1995; Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561
    [Google Scholar]
  20. Maymo-Gatell X., Chien Y., Gossett J. M., Zinder S. H. 1997; Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571 [CrossRef]
    [Google Scholar]
  21. Maymo-Gatell X., Anguish T., Zinder S. H. 1999; Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “ Dehalococcoides ethenogenes ” 195. Appl Environ Microbiol 65:3108–3113
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  23. Middeldorp P. J. M., Van Aalst M. A., Rijnaarts H. H. M., Stams F. J. M., De Kreuk H. F., Schraa G., Bosma T. N. P. 1998; Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes. Water Sci Technol 37:8105–110
    [Google Scholar]
  24. Middeldorp P. J. M., Luijten M. L. G. C., Van de Pas B. A., Van Eekert M. H. A., Kengen S. W. M., Schraa G., Stams A. J. M. 1999; Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation J 3:151–169 [CrossRef]
    [Google Scholar]
  25. Miller E., Wohlfarth G., Diekert G. 1997; Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519 [CrossRef]
    [Google Scholar]
  26. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    [Google Scholar]
  27. Oremland R. S., Switzer Blum J., Culbertson C. W., Visscher P. T., Miller L. G., Dowdle P., Strohmaier F. E. 1994; Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019
    [Google Scholar]
  28. Ryoo D., Shim H., Canada K., Barbieri P., Wood T. K. 2000; Aerobic degradation of tetrachloroethylene by toluene- o -xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18:775–778 [CrossRef]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Scholten J. C. M., Stams A. J. M. 1995; The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68:309–315 [CrossRef]
    [Google Scholar]
  32. Scholz-Muramatsu H., Neumann A., Meßmer M., Moore E., Diekert G. 1995; Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 16348–56 [CrossRef]
    [Google Scholar]
  33. Schumacher W., Kroneck P. M. H., Pfennig N. 1992; Comparative systematic study on “ Spirillum ” 5175, Campylobacter and Wolinella species. Description of “Spirillum ”5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  35. Stolz J. F., Ellis D. J., Switzer Blum J., Ahmann D., Lovley D. R., Oremland R. S. 1999; Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov. new members of the Sulfurospirillum clade of the ε Proteobacteria . Int J Syst Bacteriol 49:1177–1180 [CrossRef]
    [Google Scholar]
  36. Strunk O., Ludwig W. 1995 arb: a software environment for sequence data Technical University of Munich; http://www.arb-home.de/
    [Google Scholar]
  37. Van de Pas B. A., Smidt H., Hagen W. R., Van der Oost J., Schraa G., Stams A. J. M., De Vos W. M. 1999; Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans . J Biol Chem 274:20287–20292 [CrossRef]
    [Google Scholar]
  38. Wild A., Hermann R., Leisinger T. 1996; Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02417-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02417-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error