1887

Abstract

On the basis of phenotypic and genotypic characteristics, a novel species belonging to the genus is described. A facultatively psychrophilic, Gram-negative, aerobic, rod-shaped strain, A37, was isolated from alpine glacier cryoconite. The non-flagellated and non-spore-forming isolate grew over a temperature range of 1–25 °C, showed activities of oxidase, catalase, DNase, protease (gelatin, casein), amylase, -glucosidase, -galactosidase and -lactamase and degraded oil hydrocarbons. A distinct optimum temperature of 15 °C was observed for both protease production and oil hydrocarbon biodegradation. Analysis of 16S rDNA revealed that strain A37 represents a distinct taxon within . DNA from strain A37 showed only 19·7 % genetic relatedness to the DNA of . The DNA G+C content was 43·4 mol%. Dominant fatty acids (51 %) were iso-15 : 0 2-OH and 16 : 17. The strain is assigned to a novel species, for which the name sp. nov. is proposed, with A37 (=DSM 14825=LMG 21415) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02436-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531291.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02436-0&mimeType=html&fmt=ahah

References

  1. Bej A. K., Saul D., Aislabie J. 2000; Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105 [CrossRef]
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Chen C.-Y., Skidmore D. R. 1987; Langmuir adsorption isotherm for Sulfolobus acidocaldarius on coal particles. Biotechnol Lett 9:191–194 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Delille D., Perret E. 1989; Influence of temperature on the growth potential of southern polar marine bacteria. Microb Ecol 18:117–123 [CrossRef]
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  8. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (Phylogenetic Inference Package) version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Gerday C., Aittaleb M., Bentahir M.11 other authors 2000; Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107 [CrossRef]
    [Google Scholar]
  11. Gounot A. M. 1999; Microbial life in permanently cold soils. In Cold-Adapted Organisms pp 3–15Edited by Margesin R., Schinner F. Berlin: Springer;
    [Google Scholar]
  12. Herbert R. A. 1986; The ecology and physiology of psychrophilic microorganisms. In Microbes in Extreme Environments pp 1–23Edited by Herbert R. A., Codd G. A. London: Academic Press;
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Huston A. L., Krieger-Brockett B. B., Deming J. W. 2000; Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388 [CrossRef]
    [Google Scholar]
  15. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Parker C. T. Jr11 other authors 1999; A new version of the RDP (Ribosomal Database Project. Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  18. Margesin R., Schinner F. 1992a; A comparison of extracellular proteases from three psychrotrophic strains of Pseudomonas fluorescens . J Gen Appl Microbiol 38:209–225 [CrossRef]
    [Google Scholar]
  19. Margesin R., Schinner F. 1992b; Extracellular protease production by psychrotrophic bacteria from glaciers. Int Biodeterior Biodegrad 29:177–189 [CrossRef]
    [Google Scholar]
  20. Margesin R., Schinner F. 1997; Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol Ecol 24:243–249 [CrossRef]
    [Google Scholar]
  21. Margesin R., Schinner F. 2001; Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663 [CrossRef]
    [Google Scholar]
  22. Margesin R., Feller G., Gerday C., Russell N. J. 2002a; Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In The Encyclopedia of Environmental Microbiology vol 2 pp 871–885Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  23. Margesin R., Zacke G., Schinner F. 2002b; Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alpine Res 34:88–93 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  26. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  27. Morita Y., Nakamura T., Hasan Q., Murakami Y., Yokoyama K., Tamiya E. 1997; Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444 [CrossRef]
    [Google Scholar]
  28. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  29. Russell N. J. 1990; Cold adaptation of microorganisms. Philos Trans R Soc London B Biol Sci 326:595–608 [CrossRef]
    [Google Scholar]
  30. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 20:1–6
    [Google Scholar]
  31. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  32. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemisch-mikrobiologisches Praktikum Stuttgart: Thieme;
    [Google Scholar]
  33. Takeuchi N., Kohshima S., Seko K. 2001; Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alpine Res 33:115–122 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  36. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H. 2002; Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02436-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02436-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error