1887

Abstract

Members of the genus constitute a diverse group of organisms, all of which, when harbouring the appropriate plasmids, are capable of causing neoplastic growths on susceptible host plants. The agrobacteria, which are members of the family , can be differentiated into at least three biovars, corresponding to species divisions based on differential biochemical and physiological tests. Recently, Young . [ (2003), 89–103] proposed to incorporate all members of the genus into the genus . We present evidence from classical and molecular comparisons that supports the conclusion that the biovar 1 and biovar 3 agrobacteria are sufficiently different from members of the genus to warrant retention of the genus . The biovar 2 agrobacteria cluster more closely to the genus , but some studies suggest that these isolates differ from species of with respect to their capacity to interact with plants. We conclude that there is little scientific support for the proposal to group the agrobacteria into the genus and consequently recommend retention of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02445-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531681.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02445-0&mimeType=html&fmt=ahah

References

  1. Allen E. K., Allen O. N. 1950; Biochemical and symbiotic properties of the rhizobia. Bacteriol Rev 14:273–330
    [Google Scholar]
  2. Bernaerts M. J., DeLey J. 1963; A biochemical test for crown gall bacteria. Nature 197:406–407
    [Google Scholar]
  3. Bouzar H., Quadah D., Krimi Z., Jones J. B., Trovato M., Petit A., Dessaux Y. 1993; Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl Environ Microbiol 59:1310–1317
    [Google Scholar]
  4. Bouzar H., Chilton W. S., Nesme X., Dessaux Y., Vaudequin V., Petit A., Jones J. B., Hodge N. C. 1995; A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61:65–73
    [Google Scholar]
  5. Brochier C., Philippe H., Moreira D. 2000; The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 16:529–533 [CrossRef]
    [Google Scholar]
  6. de Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733 [CrossRef]
    [Google Scholar]
  7. Du Plessis H. J., Van Vuuren H. J. J., Hatting M. J. 1984; Biotypes and phenotypic groups of strains of Agrobacterium in South Africa. Phytopathology 74:524–529 [CrossRef]
    [Google Scholar]
  8. Galibert F., Finan T. M., Long S. R.53 other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672 [CrossRef]
    [Google Scholar]
  9. Goodner B., Hinkle G., Gattung S.28 other authors 2001; Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328 [CrossRef]
    [Google Scholar]
  10. Holmes B., Roberts P. 1981; The classification, identification and nomenclature of Agrobacteria. J Appl Bacteriol 50:443–467 [CrossRef]
    [Google Scholar]
  11. Hooykaas P. J. J., van Brussel A. A. N., den Dulk-Ras H., van Slogteren G. M. S., Schilperoort R. A. 1981; Sym plasmid of R. trifolii expressed in different rhizobial species and in Agrobacterium tumefaciens . Nature 276:634–636
    [Google Scholar]
  12. Hooykaas P. J. J., Snijdewint G. M., Schilperoort R. A. 1982; Identification of the Sym plasmid of Rhizobium leguminosarum strain 1001 and its transfer to and expression in other rhizobia and Agrobacterium tumefaciens . Plasmid 8:73–82 [CrossRef]
    [Google Scholar]
  13. Jarvis B. D. W., Ward L. J. H., Slade E. A. 1989; Expression by soil bacteria of nodulation genes from Rhizobium leguminosarum biovar trifolii . Appl Environ Microbiol 55:1426–1434
    [Google Scholar]
  14. Jordan D. C. 1984; Genus I. Rhizobium Frank 1889, 338AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 235–242Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Jumas-Bilak E., Michaux-Charachon S., Bourg G., Ramuz M., Allardet-Servent A. 1998; Unconventional genomic organization in the alpha subgroup of the Proteobacteria . J Bacteriol 180:2749–2755
    [Google Scholar]
  16. Keane P. J., Kerr A., New P. B. 1970; Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  17. Kerr A., Panagopoulos C. G. 1977; Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopathol Z 90:172–179 [CrossRef]
    [Google Scholar]
  18. Kersters K., De Ley L. 1984; Genus III. Agrobacterium Conn 1942, 359AL. In Bergey's Manual of Systematic Bacteriology vol 1 pp 244–254Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. López M. M., Gorris M. T., Montojo A. M. 1988; Opine utilization by Spanish isolates of Agrobacterium tumefaciens . Plant Pathol 37:565–572 [CrossRef]
    [Google Scholar]
  20. Moreira D., Philippe H. 2000; Molecular phylogeny: pitfalls and progress. Int Microbiol 3:9–16
    [Google Scholar]
  21. Ophel K., Kerr A. 1990; Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40:236–241 [CrossRef]
    [Google Scholar]
  22. Østerås M., Stanley J., Finan T. M. 1995; Identification of rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system in Rhizobium species. J Bacteriol 177:5485–5494
    [Google Scholar]
  23. Otten L., De Ruffray P., Momol E. A., Momol M. T., Burr T. 1996; Phylogenetic relationships between Agrobacterium vitis isolates and their Ti plasmids. Mol Plant-Microbe Interact 9:782–786 [CrossRef]
    [Google Scholar]
  24. Pionnat S., Keller H., Héricher D., Bettachini A., Dessaux Y., Nesme X., Poncet C. 1999; Ti plasmids from Agrobacterium characterize rootstock clones that initiated a spread of crown gall disease in Mediterranean countries. Appl Environ Microbiol 65:4197–4206
    [Google Scholar]
  25. Pulawska J., Maes M., Willems A., Sobiczewski P. 2000; Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium , Rhizobium and Sinorhizobium strains. Syst Appl Microbiol 23:238–244 [CrossRef]
    [Google Scholar]
  26. Ridé M., Ridé S., Petit A., Bollet C., Dessaux Y., Gardan L. 2000; Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar 1, 2, and 3 strains from France. Appl Environ Microbiol 66:1818–1825 [CrossRef]
    [Google Scholar]
  27. Sawada H., Ieki H., Oyaizu H., Matsumoto S. 1993; Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes . Int J Syst Bacteriol 43:694–702 [CrossRef]
    [Google Scholar]
  28. Schroth M. N., Thompson J. P., Hildebrand D. C. 1965; Isolation of Agrobacterium tumefaciens - A. radiobacter group from soil. Phytopathology 55:645–647
    [Google Scholar]
  29. Segovia L., Piñero D., Palacios R., Martínez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum . Appl Environ Microbiol 57:426–433
    [Google Scholar]
  30. Soberón-Chávez G., Nájera R. 1989; Isolation from soil of Rhizobium leguminosarum lacking symbiotic information. Can J Microbiol 35:464–468 [CrossRef]
    [Google Scholar]
  31. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium , Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [CrossRef]
    [Google Scholar]
  32. Truchet G., Rosenberg C., Vasse J., Julliot J.-S., Camut S., Denarie J. 1984; Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens : host-specific nodulation by atypical infection. J Bacteriol 157:134–142
    [Google Scholar]
  33. Van Berkum P., Terefework Z., Paulin L., Soumalainen S., Lindstrom K., Eardly B. D. 2003; Discordant phylogenies within the rrn loci of Rhizobia. J Bacteriol 185:2988–2998 [CrossRef]
    [Google Scholar]
  34. Van Veen R. J. M., den Dulk-Ras H., Schilperoort R. A., Hooykaas P. J. J. 1989; Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch Microbiol 153:85–98 [CrossRef]
    [Google Scholar]
  35. Wang E. T., van Berkum P., Beyene D., Sui X. H., Dorado O., Chen W. X., Martínez-Romero E. 1998; Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae . Int J Syst Bacteriol 48:687–699 [CrossRef]
    [Google Scholar]
  36. Weller S. A., Simpkins S. A., Stead D. E., Kurdziel A., Hird H., Weeks R. J. 2002; Identification of Agrobacterium spp. present within Brassica napus seed by TaqMan PCR - implications for GM screening procedures. Arch Microbiol 178:338–343 [CrossRef]
    [Google Scholar]
  37. Willems M., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313 [CrossRef]
    [Google Scholar]
  38. Wood D. W., Setubal J. C., Kaul R.48 other authors 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323 [CrossRef]
    [Google Scholar]
  39. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120 [CrossRef]
    [Google Scholar]
  40. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H. 2001; A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al . 1998 as new combinations: Rhizobium radiobacter , R. rhizogenes, R. rubi , R. undicola , and R. vitis . Int J Syst Evol Microbiol 51:89–103
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02445-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error