1887

Abstract

A novel marine lactic acid rod bacterium has been described for eight strains isolated from living and decomposing marine organisms collected from temperate and subtropical areas of Japan. The isolates were Gram-positive, catalase-negative, non-sporulating and motile with peritrichous flagella. They were slightly halophilic, highly halotolerant and alkaliphilic; the optimum NaCl concentration for growth was 2·0–3·75 % (w/v) with a range from 0 to 17·0–20·5 % (depending on the strain); the optimum pH was between 8·0 and 9·5 with a range from 6·0 to 10·0. They were psychrotolerant, growing well at −1·8 °C with a maximum at 40–45 °C and the optimum at 37–40 °C. Lactate yields were 87–100 % per consumed glucose; the residual products were formate, acetate and ethanol with a molar ratio of approximately 2 : 1 : 1. The product composition was markedly affected by the pH of fermentation medium; at higher pH, the yield of lactate decreased (60–65 % at pH 9·0) and that of other products increased conversely. The cell-wall peptidoglycan type was type A4, Orn--Glu, whereas that of the genus , the phylogenetically closest lactic acid bacterium, was type A4, Orn--Asp. The major cellular fatty acids were C16 : 0, C16 : 19, C18 : 0 and C18 : 1Δ9 (oleic acid). The G+C content of the DNA was 34·6–36·2 mol%. The eight isolates were phenotypically homogeneous and formed a single genomic species. The 16S rRNA gene sequence analysis indicated that the isolates constituted an independent phylogenetic lineage within the radiation of lactic acid bacteria with 96·2 % similarity to the genus . The secondary structure and the nucleotide sequence of the V6 region of the 16S rRNA were characteristic of the organism among other related lactic acid genera. On the bases of phenotypic and phylogenetic distinctness, the organism was proposed to belong to a new genus and species, gen. nov., sp. nov. The type strain, M13-2 (G+C=36·2 mol%), has been deposited in the IAM, NBRC, NCIMB and NRIC culture collections as IAM 14980, NBRC 100002, NCIMB 13873 and NRIC 0510, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02446-0
2003-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530711.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02446-0&mimeType=html&fmt=ahah

References

  1. Aguirre M., Morrison D., Cookson B. D., Gay F. W., Collins M. D. 1993; Phenotypic and phylogenetic characterization of some Gemella-like organisms from human infections: description of Dolosigranulum pigrum gen. nov., sp. nov. J Appl Bacteriol 75:608–612 [CrossRef]
    [Google Scholar]
  2. Alumni Association of The Institute of Medical Sciences, The University of Tokyo (editors) 1988 Biseibutsugaku Jissyhu Teiyo (Manual for Practical Microbiology) (in Japanese) Tokyo: Maruzen;
    [Google Scholar]
  3. Axelsson L. T. 1993; Lactic acid bacteria: classification and physiology. In Lactic Acid Bacteria pp. 1–63Edited by Salminen S., von Wright A. New York: Marcel Dekker;
    [Google Scholar]
  4. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  5. Burton H. R. 1980; Methane in a saline Antarctic lake. In Biochemistry of Ancient and Modern Environments pp. 243–251Edited by Trudinger P. A. , Walter M. R. . Canberra: Australian Academy of Science;
    [Google Scholar]
  6. Carlsson J., Griffith C. J. 1974; Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19:1105–1109 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Farrow J. A. E., Phillips B. A., Ferusu S., Jones D. 1987; Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 37:310–316 [CrossRef]
    [Google Scholar]
  8. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Franzmann P. D., Höpfl P., Weiss N., Tindall B. J. 1991; Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 156:255–262 [CrossRef]
    [Google Scholar]
  12. Gatesoupe F. J. 1999; The use of probiotics in aquaculture. Aquaculture 180:147–165 [CrossRef]
    [Google Scholar]
  13. Goto K., Matsubara H., Mochida K., Matsumura T., Hara Y., Niwa M., Yamasato K. 2002; Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113
    [Google Scholar]
  14. Gunsalus I. C., Niven C. F. Jr 1942; The effect of pH on the lactic acid fermentation. J Biol Chem 145:131–136
    [Google Scholar]
  15. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  16. International Committee on Systematics of Prokaryotes 2001; Notification that new names and new combinations have appeared in volume 51, part 3, of the IJSEM. Int J Syst Evol Microbiol 51:1231–1233 [CrossRef]
    [Google Scholar]
  17. Janssen P. H., Evers S., Rainey F. A., Weiss N., Ludwig W., Harfoot C. G., Schink B. 1995; Lactosphaera gen. nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Bacteriol 45:565–571 [CrossRef]
    [Google Scholar]
  18. Jones B. E., Grant W. D., Collins N. C., Mwatha W. E. 1994; Alkaliphiles: Diversity and identification. In Bacterial Diversity and Systematics pp. 195–230Edited by Priest F. G. , Ramos-Cormenzana A., Tindall B. J. New York: Plenum;
    [Google Scholar]
  19. Kawahara K., Uchida K., Aida K. 1979; Direct hydroxylation in the biosynthesis of hydroxy fatty acid in lipid of a Pseudomonas ovalis. Biochim Biophis Acta 572:1–8 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  21. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  22. Kushner D. J. 1978; Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments pp. 318–346Edited by Kushner D. J. . London, New York: Academic Press;
    [Google Scholar]
  23. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria vol. I pp. 109–140Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  24. Lindmark D. G., Paolella P., Wood N. P. 1969; The pyruvate formate-lyase system of Streptococcus faecalis. J Biol Chem 244:3605–3612
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  26. Masuda N., Nakaya S., Burton H. R., Torii T. 1988; Trace element distributions in some saline lakes of the Vestfold Hills, Antarctica. Hydrobiologia 165:103–114 [CrossRef]
    [Google Scholar]
  27. Mees R. H. 1934 Onderzoekingen over de biersarcina PhD Thesis Technical University, Delft; The Netherlands:
    [Google Scholar]
  28. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determination and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Kreig N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Nakagawa A., Kitahara K. 1959; Taxonomic studies on the genus Pediococcus. J Gen Appl Microbiol 3:95–126
    [Google Scholar]
  30. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 51:1161–1170 [CrossRef]
    [Google Scholar]
  31. Okada S., Uchimura T., Kozaki M. 1992 Nyusankin Jikken Manyuaru (Laboratory Manual for Lactic Acid Bacteria) (in Japanese) Tokyo: Asakura-shoten;
    [Google Scholar]
  32. Rhee S. K., Pack M. Y. 1980; Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. J Bacteriol 144:217–221
    [Google Scholar]
  33. Ringø E., Gatesoupe F.-J. 1998; Lactic acid bacteria in fish: a review. Aquaculture 160:177–203 [CrossRef]
    [Google Scholar]
  34. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Sano H., Sakai M., Nishijima M. 1996; Application of MS to the search of the products from marine bacteria. Sitsuryo Bunseki (J Mass Spectrom Soc Jpn) 44:377–391 (in Japanese) [CrossRef]
    [Google Scholar]
  37. Somogyi M. 1945; A new reagent for the determination of sugars. J Biol Chem 160:61–68
    [Google Scholar]
  38. Stackebrandt E., Schumann P., Swiderski J., Weiss N. 1999; Reclassification of Brevibacterium incertum (Breed 1953) as Desemzia incerta gen. nov., comb. nov. Int J Syst Bacteriol 49:185–188 [CrossRef]
    [Google Scholar]
  39. Suto T., Fujimura Y., Kuraishi H. 1982; Analysis of fatty acids. In Biseibutsuno Kagakubunrui Jikkenho (Manual of Microbial Chemosystematics) pp. 155–172 (in Japanese) Edited by Komagata K. Tokyo: Gakkai Shuppan Senta (Japan Scientific Societies Press);
    [Google Scholar]
  40. Takahashi S., Abbe K., Yamada T. 1982; Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J Bacteriol 149:1034–1040
    [Google Scholar]
  41. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  42. Thomas T. D., Ellwood D. C., Longyear V. M. C. 1979; Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138:109–117
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  44. Vogel R. F., Böcker G., Stolz P.7 other authors 1994; Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Syst Bacteriol 44:223–229 [CrossRef]
    [Google Scholar]
  45. Williams R. A. D., Sadler S. A. 1971; Electrophoresis of glucose-6-phosphate dehydrogenase, cell wall composition and the taxonomy of heterofermentative lactobacilli. J Gen Microbiol 65:351–358 [CrossRef]
    [Google Scholar]
  46. Yamada T., Carlsson J. 1975; Regulation of lactate dehydrogenase and change of fermentation products in Streptococci. J Bacteriol 124:55–61
    [Google Scholar]
  47. Yamada Y., Kuraishi H. 1982; Analysis of ubiquinones and menaquinones. In Biseibutsuno Kagakubunrui Jikkenho (Manual of Microbial Chemosystematics) pp. 143–155 (in Japanese) Edited by Komagata K. Tokyo: Gakkai Shuppan Senta (Japan Scientific Societies Press);
    [Google Scholar]
  48. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02446-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02446-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error