1887

Abstract

Phylogenetic analysis based on 16S rDNA sequences revealed that Humm 1946 is more closely related to the genus than to authentic pseudomonads. The type strain of (DSM 6810) exhibited 16S rDNA similarity levels of 97·5 and 98·2 % to the type strains of and , respectively, but of less than approximately 92 % to species with known 16S rDNA sequences. Respiratory lipoquinone and cellular fatty acid analyses showed that the type strain of has characteristics similar to those of the genus , not those of the genus . DSM 6810 contained ubiquinone-8 as the predominant respiratory lipoquinone and iso-C as the major fatty acid. DNA–DNA relatedness data indicate that is a species distinct from and . Therefore, on the basis of these data, Humm 1946 should be transferred to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02464-0
2003-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531357.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02464-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. De Vos P., Van Landschoot A., Segers P.9 other authors 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas -like strains by deoxyribonucleic acid : ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  6. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov. sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef]
    [Google Scholar]
  7. Grimes D. J., Woese C. R., MacDonell M. T., Colwell R. R. 1997; Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int J Syst Bacteriol 47:19–27 [CrossRef]
    [Google Scholar]
  8. Humm H. J. 1946; Marine agar-digesting bacteria of the South Atlantic coast. Duke Univ Mar Stn Bull 3:45–75
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K.-H. 1996; Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19:465–477 [CrossRef]
    [Google Scholar]
  11. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  13. Meyer O., Stackebrandt E., Auling G. 1993; Reclassification of ubiquinone Q-10 containing carboxidotrophic bacteria: transfer of “[ Pseudomonas ] carboxydovorans ” OM5T to Oligotropha , gen. nov., as Oligotropha carboxidovorans , comb. nov., transfer of “[ Alcaligenes ] carboxydus ” DSM 1086 to Carbophilus , gen. nov., as Carbophilus carboxidus , comb. nov., transfer of “[ Pseudomonas ] compransoris ” DSM 1231T to Zavarzinia , gen. nov., as Zavarzinia compransoris , comb. nov., and amended descriptions of the new genera. Syst Appl Microbiol 16390–395 [CrossRef]
    [Google Scholar]
  14. Migula W. 1894; Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238 in German
    [Google Scholar]
  15. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  16. Palleroni N. J. 1984; Genus Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 141–199Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Felsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510 [CrossRef]
    [Google Scholar]
  19. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  21. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1992; Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42:84–92 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Willems A., Busse J., Goor M.8 other authors 1989; Hydrogenophaga , a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava ), Hydrogenophaga palleroni (formerly Pseudomonas palleroni ), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “ Pseudomonas carboxydoflava ”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis . Int J Syst Bacteriol 39:319–333 [CrossRef]
    [Google Scholar]
  24. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax , a new genus for Pseudomonas facilis , Pseudomonas delafieldii , E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398 [CrossRef]
    [Google Scholar]
  25. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov. Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  26. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275 [CrossRef]
    [Google Scholar]
  27. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  29. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. 2003; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [CrossRef]
    [Google Scholar]
  30. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02464-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02464-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error