1887

Abstract

Thirteen isolates of were obtained from activated sludge plants in Victoria, Australia. Earlier 16S–23S rDNA genomic fingerprinting and partial 16S rDNA sequence data had suggested that these isolates might contain previously undescribed species. This view was confirmed here. A polyphasic taxonomic approach involving phenotypic characterization, near-complete 16S rDNA sequence data and DNA–DNA hybridization analyses support the view that seven novel genomic species can be differentiated in this group of isolates. However, when fluorescence hybridization (FISH) studies were performed with a 16S-rRNA-targeted probe specific for the genus , used to identify in activated sludge plants, all these strains responded positively. This suggests that these isolates would not have been missed in earlier FISH studies where their role as polyphosphate-accumulating bacteria has been questioned. This report describes these isolates and proposes that they be named (type strain B2=DSM 14961 =CIP 107474), (type strain 4B02=DSM 14964 =CIP 107468), (type strain 17A04=DSM 14968 =CIP 107470), (type strain 7N16=DSM 14971 =CIP 107465), (type strain AB1110=DSM 14962 =CIP 107472), (type strain 4N13=DSM 14670 =CIP 107469) and (type strain 9A01=DSM 14967 =CIP 107464).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02486-0
2003-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs530953.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02486-0&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual part 3.3.6 pp 1–15Edited by Akkermans A. D. L., van Elsas J. D., de Bruin F. J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. 1990; Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770
    [Google Scholar]
  3. Beacham A. M., Seviour R. J., Lindrea K. C., Livingston I. 1990; Genospecies diversity of Acinetobacter isolates obtained from a biological nutrient removal pilot plant of a modified UCT configuration. Water Res 24:23–29 [CrossRef]
    [Google Scholar]
  4. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  5. Bond P. L., Keller J., Blackall L. L. 1999; Bio-P and non-bio-P bacteria identification by a novel microbial approach. Water Sci Technol 39:13–20
    [Google Scholar]
  6. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . Int J Syst Bacteriol 36:228–240 [CrossRef]
    [Google Scholar]
  7. Bouvet P. J. M., Jeanjean S. 1989; Delineation of new proteolytic genomic species in the genus Acinetobacter . Res Microbiol 140:291–299 [CrossRef]
    [Google Scholar]
  8. Buchan L. 1983; Possible biological mechanism of phosphorus removal. Water Sci Technol 15:87–103
    [Google Scholar]
  9. Carr E., Eason H., Feng S., Hoogenraad A., Croome R., Soddell J., Lindrea K., Seviour R. 2001a; RAPD-PCR typing of Acinetobacter isolates from activated sludge systems designed to remove phosphorus microbiologically. J Appl Microbiol 90:309–319 [CrossRef]
    [Google Scholar]
  10. Carr E., Ward A., Gürtler V., Seviour R. J. 2001b; Pyrolysis mass spectrometry (PyMS) and 16S–23S rDNA spacer region fingerprinting suggests the presence of novel acinetobacters in activated sludge. Syst Appl Microbiol 24:430–442 [CrossRef]
    [Google Scholar]
  11. Christensen H., Bisgaard M., Frederiksen W., Mutters R., Kuhnert P., Olsen J. E. 2001; Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision. Int J Syst Evol Microbiol 51:2221–2225 [CrossRef]
    [Google Scholar]
  12. Cloete T. E., Steyn P. L. 1987; A combined fluorescent antibody-membrane filter technique for enumerating Acinetobacter in activated sludge. In Biological Phosphate Removal from Wastewaters pp 335–338Edited by Ramadori R. Oxford: Pergamon Press;
    [Google Scholar]
  13. Di Cello F., Pepi M., Baldi F., Fani R. 1997; Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus . Res Microbiol 148:237–249 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  15. Fuhs G. W., Chen M. 1975; Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb Ecol 2:119–138 [CrossRef]
    [Google Scholar]
  16. Gerner-Smidt P., Tjernberg I. 1993; Acinetobacter in Denmark. II. Molecular studies of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Acta Pathol Microbiol Immunol Scand 101:826–832 [CrossRef]
    [Google Scholar]
  17. Gerner-Smidt P., Tjernberg I., Ursing J. 1991; Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 29:277–282
    [Google Scholar]
  18. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330 [CrossRef]
    [Google Scholar]
  19. Ibrahim A., Gerner-Smidt P., Liesack W. 1997; Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47:837–841 [CrossRef]
    [Google Scholar]
  20. Juni E. 1972; Interspecies transformation of Acinetobacter : genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931
    [Google Scholar]
  21. Juni E. 1984; Genus III. Acinetobacter Brisou et Prévôt 1954. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 303–307Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Kämpfer P., Tjernberg I., Ursing J. 1993; Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol 75:259–268 [CrossRef]
    [Google Scholar]
  23. Kämpfer P., Neef A., Salkinoja-Salonen M., Busse H.-J. 2002; Chelatobacter heintzii (Auling et al . 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al . 1992. Int J Syst Evol Microbiol 52:835–839 [CrossRef]
    [Google Scholar]
  24. Knight G. C., McDonnell S. A., Seviour R. J., Soddell J. A. 1993; Identification of Acinetobacter isolates using the Biolog identification system. Lett Appl Microbiol 16:261–264 [CrossRef]
    [Google Scholar]
  25. Maszenan A. M., Seviour R. J., McDougall B. M., Soddell J. A. 1997; Diversity of isolates of Acinetobacter from activated sludge systems based on their whole cell protein patterns. J Ind Microbiol Biotechnol 18:267–271 [CrossRef]
    [Google Scholar]
  26. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J. K., Dijkshoorn L. 2001; Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 511891–1899 [CrossRef]
    [Google Scholar]
  27. Nishimura Y., Ino T., Iizuka H. 1988; Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38:209–211 [CrossRef]
    [Google Scholar]
  28. Patel B. K. C., Andrews K. T., Ollivier B., Mah R. A., Garcia J. L. 1995; Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA gene. FEMS Microbiol Lett 134:115–119 [CrossRef]
    [Google Scholar]
  29. Reasoner D. S., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  30. Seviour E. M., Blackall L. L., Christensson C., Hugenholtz P., Cunningham M. A., Bradford D., Stratton H. M., Seviour R. J. 1997; The filamentous morphotype Eikelboom type 1863 is not a single genetic entity. J Appl Microbiol 82:411–421 [CrossRef]
    [Google Scholar]
  31. Soddell J. A., Beacham A. M., Seviour R. J. 1993; Phenotypic identification of non-clinical isolates of Acinetobacter species. J Appl Bacteriol 74:210–214 [CrossRef]
    [Google Scholar]
  32. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K.-H. 1997; Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896
    [Google Scholar]
  33. Sneath P. H. A. 1979a; Basic program for character separation indices from an identification matrix of percent positive characters. Comput Geosci 5:349–357 [CrossRef]
    [Google Scholar]
  34. Sneath P. H. A. 1979b; Basic program for identification of an unknown with presence–absence data against an identification matrix of percent positive characters. Comput Geosci 5:195–213 [CrossRef]
    [Google Scholar]
  35. Sneath P. H. A. 1980; Basic program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Comput Geosci 6:21–26 [CrossRef]
    [Google Scholar]
  36. Stackebrandt E., Frederiksen W., Garrity G. M.10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  38. Tjernberg I., Ursing J. 1989; Clinical strains of Acinetobacter classified by DNA–DNA hybridization. Acta Pathol Microbiol Immunol Scand 97:595–605 [CrossRef]
    [Google Scholar]
  39. Veron M. 1975; Nutrition et taxonome des Entérobacteriaceae et bacteries voisine I. Méthod d'étude de auxanogrammes. Ann Microbiol (Paris) 126:267–274
    [Google Scholar]
  40. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.-H. 1994; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  41. Willcox W. R., Lapage S. P., Bascomb S., Curtis M. A. 1973; Identification of bacteria by computer: theory and programming. J Gen Microbiol 77:317–330 [CrossRef]
    [Google Scholar]
  42. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02486-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02486-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error