1887

Abstract

Fourteen sucrose-positive -like isolates from fresh water and reared European eels were subjected to a polyphasic study to determine their taxonomic position. Numerical taxonomy was used to analyse phenotypic data obtained for these isolates and 43 type and reference strains representative of recognized species. The cluster (phenon 1) was defined at 81·6 % similarity ( ); this included the -like isolates, the sucrose-positive strain biogroup sobria CECT 4910 and nearly all reference strains used in the study. Four other reference strains of biogroup sobria and the type strain of were peripheral to the cluster. The supra-group ‘ biogroup sobria–’ was linked at 80·7 % similarity ( ) and was clearly segregated from the phenotypic core of the biogroup sobria species, which was related to the reference strain Popoff 224 (CECT 4835). DNA relatedness between strains grouped in the cluster (phenon 1) and CECT 4228 ranged from 70 to 100 %, but was below 50 % when DNAs from biogroup sobria CECT 4835, biogroup veronii CECT 4257 and CECT 4486 were used. In addition, DNA relatedness between peripheral biogroup sobria strains and the species (CECT 4228), (CECT 4257, CECT 4835) and (CECT 4486) was always below 54 %, as it was between the species (CECT 4486) and (CECT 4257, CECT 4835). Emendation of is proposed; this taxon now includes sucrose-positive clinical and environmental strains as well as environmental isolates that are pathogenic for fish and humans. Other new traits for this species are the ability to grow at 4–42 °C, acid production from glycerol but not from lactose, -melibiose or -raffinose, the use of -gluconate, -glutamate or -proline but not -lactate, -alanine, -arabinose or -arginine, hydrolytic activity against casein, elastin, starch and lecithin and the inability to lyse arbutin. The DNA G+C content of is also reported for the first time; it ranges from 58·1 to 61·1 mol%. On the other hand, the DNA relatedness data support the classification of peripheral reference strains of biogroup sobria outside this taxon, indicating that biogroup sobria requires further revision.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02504-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531411.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02504-0&mimeType=html&fmt=ahah

References

  1. Abbot S. L., Cheung W. K. W., Kroske-Bystrom S., Malekzadeh T., Janda J. M. 1992; Identification of Aeromonas strains to the genospecies level in the clinical laboratory. J Clin Microbiol 30:1262–1266
    [Google Scholar]
  2. Allen D. A., Austin B., Colwell R. R. 1983; Aeromonas media , a new species isolated from river water. Int J Syst Bacteriol 33:599–604 [CrossRef]
    [Google Scholar]
  3. Angen Ø., Mutters R., Caugant D. A., Olsen J. E., Bisgaard M. 1999; Taxonomic relationships of the [ Pasteurella ] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol 49:67–86 [CrossRef]
    [Google Scholar]
  4. Borrell N., Figueras M. J., Guarro J. 1998; Phenotypic identification of Aeromonas genomospecies from clinical and environmental sources. Can J Microbiol 44:103–108 [CrossRef]
    [Google Scholar]
  5. Bravo L., Monte R. J., Alfonso V., Cabrera N., Gómez M., Hernández R., García B. 1995; New species of Aeromonas isolated in Cuba. Rev Cubana Med Trop 47:215–216 in Spanish
    [Google Scholar]
  6. Carnahan A., Fanning G. R., Joseph S. W. 1991a; Aeromonas jandaei (formerly genospecies DNA group 9 A. sobria ), a new sucrose-negative species isolated from clinical specimens. J Clin Microbiol 29:560–564
    [Google Scholar]
  7. Carnahan A. M., Chakraborty T., Fanning G. R., Verma D., Ali A., Janda J. M., Joseph S. W. 1991b; Aeromonas trota sp. nov., an ampicillin-susceptible species isolated from clinical specimens. J Clin Microbiol 29:1206–1210
    [Google Scholar]
  8. Carnahan A. M., Behram S., Joseph S. W. 1991c; Aerokey II: a flexible key for identifying clinical Aeromonas species. J Clin Microbiol 29:2843–2849
    [Google Scholar]
  9. Christensen H., Angen Ø., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [CrossRef]
    [Google Scholar]
  10. Collins M. D., Martinez-Murcia A. J., Cai J. 1993; Aeromonas enteropelogenes and Aeromonas ichthiosmia are identical to Aeromonas trota and Aeromonas veronii , respectively, as revealed by small-subunit rRNA sequence analysis. Int J Syst Bacteriol 43:855–856 [CrossRef]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  12. Demarta A., Tonolla M., Caminada A., Beretta M., Peduzzi R. 2000; Epidemiological relationships between Aeromonas strains isolated from symptomatic children and household environments as determined by ribotyping. Eur J Epidemiol 16:447–453 [CrossRef]
    [Google Scholar]
  13. Esteve C. 1995; Numerical taxonomy of Aeromonadaceae and Vibrionaceae associated with reared fish and surrounding fresh and brackish water. Syst Appl Microbiol 18:391–402 [CrossRef]
    [Google Scholar]
  14. Esteve C., Biosca E. G., Amaro C. 1993; Virulence of Aeromonas hydrophila and some other bacteria isolated from European eels Anguilla anguilla reared in freshwater. Dis Aquat Org 16:15–20 [CrossRef]
    [Google Scholar]
  15. Esteve C., Gutiérrez M. C., Ventosa A. 1995a; DNA relatedness among Aeromonas allosaccharophila strains and DNA hybridization groups of the genus Aeromonas . Int J Syst Bacteriol 45:390–391 [CrossRef]
    [Google Scholar]
  16. Esteve C., Gutiérrez M. C., Ventosa A. 1995b; Aeromonas encheleia sp. nov., isolated from European eels. Int J Syst Bacteriol 45:462–466 [CrossRef]
    [Google Scholar]
  17. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du T m de l'ADN bactérien. Ann Microbiol 127:223–235
    [Google Scholar]
  18. Ghenghesh K. S., Bara F., Bukris B., el-Surmani A., Abeid S. S. 1999; Characterization of virulence factors of Aeromonas isolated from children with and without diarrhoea in Tripoli, Libya. J Diarrhoeal Dis Res 17:75–80
    [Google Scholar]
  19. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  20. Hänninen M.-L., Salmi S., Mattila L., Taipalinen R., Siitonen A. 1995; Association of Aeromonas spp. with travellers' diarrhoea in Finland. J Med Microbiol 42:26–31 [CrossRef]
    [Google Scholar]
  21. Hasan J. A. K., Macaluso P., Carnahan A. M., Joseph S. W. 1992; Elastolytic activity among Aeromonas spp. using a modified bilayer plate assay. Diagn Microbiol Infect Dis 15:201–206 [CrossRef]
    [Google Scholar]
  22. Hickman-Brenner F. W., MacDonald K. L., Steigerwalt A. G., Fanning G. R., Brenner D. J., Farmer J. J. III 1987; Aeromonas veronii , a new ornithine decarboxylase-positive species that may cause diarrhea. J Clin Microbiol 25:900–906
    [Google Scholar]
  23. Hickman-Brenner F. W., Fanning G. R., Arduino M. J., Brenner D. J., Farmer J. J. III 1988; Aeromonas schubertii , a new mannitol-negative species found in human clinical specimens. J Clin Microbiol 26:1561–1564
    [Google Scholar]
  24. Hsu T. C., Waltman W. D., Shotts E. B. 1981; Correlation of extracellular enzymatic activity and biochemical characteristics with regard to virulence of Aeromonas hydrophila . Dev Biol Stand 49:101–111
    [Google Scholar]
  25. Huys G., Coopman R., Janssen P., Kersters K. 1996; High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int J Syst Bacteriol 46:572–580 [CrossRef]
    [Google Scholar]
  26. Huys G., Kämpfer P., Altwegg M.7 other authors 1997; Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. Int J Syst Bacteriol 47:1165–1171 [CrossRef]
    [Google Scholar]
  27. Huys G., Kämpfer P., Swings J. 2001; New DNA-DNA hybridization and phenotypic data on the species Aeromonas ichthiosmia and Aeromonas allosaccharophila : A. ichthiosmia Schubert et al . 1990 is a later synonym of A. veronii Hickman-Brenner et al . 1987. Syst Appl Microbiol 24:177–182 [CrossRef]
    [Google Scholar]
  28. Janda J. M., Abbott S. L. 1998; Evolving concepts regarding the genus Aeromonas : an expanding panorama of species, disease presentations, and unanswered questions. Clin Infect Dis 27:332–344 [CrossRef]
    [Google Scholar]
  29. Janda J. M., Kokka R. P. 1991; The pathogenicity of Aeromonas strains relative to genospecies and phenospecies identification. FEMS Microbiol Lett 90:29–34 [CrossRef]
    [Google Scholar]
  30. Janda J. M., Guthertz L. S., Kokka R. P., Shimada T. 1994; Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin Infect Dis 19:77–83 [CrossRef]
    [Google Scholar]
  31. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 655–682Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  32. Joseph S. W., Carnahan A. M. 2000; Update of the genus Aeromonas . ASM News 66:218–223
    [Google Scholar]
  33. Kämpfer P., Altwegg M. 1992; Numerical classification and identification of Aeromonas genospecies. J Appl Bacteriol 72:341–351 [CrossRef]
    [Google Scholar]
  34. Kothary M. H., Kreger A. S. 1985; Production and partial characterization of an elastolytic protease of Vibrio vulnificus . Infect Immun 50:534–540
    [Google Scholar]
  35. Kühn I., Albert M. J., Ansaruzzaman M.8 other authors 1997; Characterization of Aeromonas spp. isolated from humans with diarrhea, from healthy controls, and from surface water in Bangladesh. J Clin Microbiol 35:369–373
    [Google Scholar]
  36. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  37. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  38. Martinetti Lucchini G., Altwegg M. 1992; rRNA gene restriction patterns as taxonomic tools for the genus Aeromonas . Int J Syst Bacteriol 42:384–389 [CrossRef]
    [Google Scholar]
  39. Martínez-Murcía A. J., Benlloch S., Collins M. D. 1992a; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421 [CrossRef]
    [Google Scholar]
  40. Martínez-Murcía A. J., Esteve C., Garay E., Collins M. D. 1992b; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas . FEMS Microbiol Lett 91:199–206 [CrossRef]
    [Google Scholar]
  41. Owen R. J., Hill L. R. 1979; The estimation of base composition, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp 217–298Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  42. Pidiyar V., Kaznowski A., Narayan N. B., Patole M., Shouche Y. S. 2002; Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus . Int J Syst Evol Microbiol 52:1723–1728 [CrossRef]
    [Google Scholar]
  43. Popoff M. 1984; Genus III. Aeromonas Kluyver and Van Niel 1936, 398AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 545–548Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  44. Popoff M. Y., Coynault C., Kiredjian M., Lemelin M. 1981; Polynucleotide sequence relatedness among motile Aeromonas species. Cur Microbiol 5:109–114 [CrossRef]
    [Google Scholar]
  45. Reed M. J., Müench M. 1938; A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  46. Rolhf F. J. 1998 NTSYS-pc. Numerical Taxonomy and Multivariant Analysis System, version 2.0 New York: Exeter Software;
    [Google Scholar]
  47. Schubert R. H. W., Hegazi M. 1988; Aeromonas eucrenophila species nova Aeromonas caviae a later and illegitimate synonym of Aeromonas punctata . Zentbl Bakteriol Mikrobiol Hyg A 268:34–39
    [Google Scholar]
  48. Schubert R. H. W., Hegazi M., Wahlig W. 1990a; Aeromonas enteropelogenes species nova. Hyg Med 15:471–472
    [Google Scholar]
  49. Schubert R. H. W., Hegazi M., Wahlig W. 1990b; Aeromonas ichthiosmia species nova. Hyg Med 15:477–479
    [Google Scholar]
  50. Sneath P. H. A., Johnson R. 1972; The influence on numerical taxonomic similarities of errors in microbiological tests. J Gen Microbiol 72:377–392 [CrossRef]
    [Google Scholar]
  51. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practice of Numerical Classification Edited by Kennedy D., Park R. B. San Francisco: W. B. Freeman;
    [Google Scholar]
  52. Sokal R. R., Rohlf F. J. 1969 Biometry, the Principles and Practice of Statistics in Biological Research Ames, IA: Iowa State University Press;
    [Google Scholar]
  53. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  54. Valera L., Esteve C. 2002; Phenotypic study by numerical taxonomy of strains belonging to the genus Aeromonas . J Appl Microbiol 93:77–95 [CrossRef]
    [Google Scholar]
  55. Wretlind B., Wadström T. 1977; Purification and properties of a protease with elastase activity from Pseudomonas aeruginosa . J Gen Microbiol 103:319–327 [CrossRef]
    [Google Scholar]
  56. Yáñez M. A., Catalán V., Apráiz D., Figueras M. J., Martínez-Murcía A. J. 2003; Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53:875–883 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02504-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02504-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error