1887

Abstract

Three strains of coryneform rods isolated from clinical samples and one of environmental origin exhibited phenotypic and chemotaxonomic properties characteristic of the genus and their 16S rRNA gene sequences were closely related (98·5–99·0 %) to that of . However, DNA–DNA hybridization of one strain (CF87) showed only 59·6 % relatedness to the type strain of , DSM 10718, and 75–82 % relatedness to the three other strains. The four strains could be differentiated from by cellular fatty acid composition and some phenotypic characteristics. These findings suggest that the four strains belong to a novel species, for which the name sp. nov. is proposed. The type strain of is CF87 (=DSM 15022=CCUG 46604).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02513-0
2003-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531321.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02513-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  3. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  4. Funke G., von Graevenitz A., Clarridge J. E. III, Bernard K. A. 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159
    [Google Scholar]
  5. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  6. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2800 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  7. Johnson J. L. 1994; Similarity analysis of rRNAs. In Methods for General and Molecular Bacteriology . pp 683–700Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. NCCLS 2002 MIC interpretive standards (μg ml−1) for Staphylococcus spp NCCLS document M100-S12 (M7) Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  10. O'Neil G. L., Ogunsola F. T., Brazier J. S., Duerden B. I. 1996; Modification of a PCR ribotyping method for application as a routine scheme for Clostridium difficile . Anaerobe 2:205–209 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  13. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  14. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  15. Wauters G., Driessen A., Ageron E., Janssens M., Grimont P. A. D. 1996; Propionic acid-producing strains previously designated as Corynebacterium xerosis , C. minutissimum , C. striatum , and CDC group I2 and group F2 coryneforms belong to the species Corynebacterium amycolatum . Int J Syst Bacteriol 46:653–657 [CrossRef]
    [Google Scholar]
  16. Wauters G., Van Bosterhaut B., Janssens M., Verhaegen J. 1998; Identification of Corynebacterium amycolatum and other nonlipophilic fermentative corynebacteria of human origin. J Clin Microbiol 36:1430–1432
    [Google Scholar]
  17. Wauters G., Charlier J., Janssens M., Delmée M. 2000a; Identification of Arthrobacter oxydans , Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 38:2412–2415
    [Google Scholar]
  18. Wauters G., Van Bosterhaut B., Avesani V., Cuvelier R., Charlier J., Janssens M., Delmée M. 2000b; Peritonitis due to Brevibacterium otitidis in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 38:4292–4293
    [Google Scholar]
  19. Wauters G., Charlier J., Janssens M., Delmée M. 2001; Brevibacterium paucivorans sp. nov., from human clinical specimens. Int J Syst Evol Microbiol 51:1703–1707 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02513-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error