1887

Abstract

A phylogenetically novel aerobic bacterium was isolated from an anaerobic–aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27, was a Gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27 grew at 25–35 °C with an optimum growth temperature of 30 °C, whilst no growth was observed below 20 °C or above 37 °C within 20 days incubation. The pH range for growth was 6·5–9·5, with an optimum at pH 7·0. Strain T-27 was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15 : 0, C16 : 1 and C14 : 0. The G+C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27 belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, (type strain T-27=JCM 11422=DSM 14586) gen. nov., sp. nov., the first cultivated representative of the phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19 % 16S rDNA sequence divergence) that is greater than well-known phyla such as the (18 % divergence).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02520-0
2003-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531155.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02520-0&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M. 1996; molphy Version 2.3 – Programs for Molecular Phylogenetics Based on Maximum Likelihood . Computer Science Monograph no: 28 Tokyo: Institute of Statistical Mathematics;
    [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  3. Axelrood P. E., Chow M. L., Radomski C. C., McDermott J. M., Davies J. 2002; Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:655–674 [CrossRef]
    [Google Scholar]
  4. Bano N., Hollibaugh J. T. 2002; Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518 [CrossRef]
    [Google Scholar]
  5. Cifuentes A., Antón J., Benlloch S., Donnelly A., Herbert R. A., Rodríguez-Valera F. 2000; Prokaryotic diversity in Zostera noltii -colonized marine sediments. Appl Environ Microbiol 66:1715–1719 [CrossRef]
    [Google Scholar]
  6. Dojka M. A., Harris J. K., Pace N. R. 2000; Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66:1617–1621 [CrossRef]
    [Google Scholar]
  7. Dunbar J., Barns S. M., Ticknor L. O., Kuske C. R. 2002; Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Garrity G. M., Holt J. G. 2001; Phylum BV. Chrysiogenetes phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 The Archaea and the Deeply Branching and Phototrophic Bacteria . pp 421–425Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  10. Garrity G. M., Winters M., Searles D. B. 2001; Taxonomic outline of the prokaryotic genera. Bergey's Manual of Systematic Bacteriology , 2nd edn. Release 1.0 http://www.cme.msu.edu/bergeys/
    [Google Scholar]
  11. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002a; Roseiflexus castenholzii gen. nov., sp. nov. a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  12. Hanada S., Liu W.-T., Shintani T., Kamagata Y., Nakamura K. 2002b; Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 52:883–887 [CrossRef]
    [Google Scholar]
  13. Hasegawa M., Kishino H. 1994; Accuracies of the simple methods for estimating the bootstrap probability of a maximum likelihood tree. Mol Biol Evol 11:142–145
    [Google Scholar]
  14. Hentschel U., Hopke J., Horn M., Friedrich A. B., Wagner M., Hacker J., Moore B. S. 2002; Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440 [CrossRef]
    [Google Scholar]
  15. Hesselmann R. P. X., Werlen C., Hahn D., van der Meer J. R., Zehnder A. J. B. 1999; Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465 [CrossRef]
    [Google Scholar]
  16. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  17. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rDNA on ‘Hydrolink’ gels. J Microbiol Methods 19:145–154 [CrossRef]
    [Google Scholar]
  18. Holmes A. J., Bowyer J., Holley M. P., O'Donoghue M., Montgomery M., Gillings M. R. 2000; Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33:111–120 [CrossRef]
    [Google Scholar]
  19. Holmes A. J., Tujula N. A., Holley M., Contos A., James J. M., Rogers P., Gillings M. R. 2001; Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264 [CrossRef]
    [Google Scholar]
  20. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  21. Hugenholtz P. 2002; Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEWS0003 http://genomebiology.com/2002/3/2/reviews/0003
    [Google Scholar]
  22. Hugenholtz P., Huber T. 2003; Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53:289–293 [CrossRef]
    [Google Scholar]
  23. Hugenholtz P., Pace N. R. 1996; Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197 [CrossRef]
    [Google Scholar]
  24. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  25. Hugenholtz P., Tyson G. W., Webb R. I., Wagner A. M., Blackall L. L. 2001; Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419 [CrossRef]
    [Google Scholar]
  26. Jenkins D., Richard M. G., Daigger G. L. 1993 Manual on the Causes and Control of Activated Sludge Bulking and Foaming , 2nd edn. Boca Raton, FL: Lewis;
    [Google Scholar]
  27. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  28. Kempsell K. E., Cox C. J., Hurle M., Wong A., Wilkie S., Zanders E. D., Gaston J. S., Crowe J. S. 2000; Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect Immun 68:6012–6026 [CrossRef]
    [Google Scholar]
  29. Kim H., Honda D., Hanada S., Kanamori N., Shibata S., Miyaki T., Nakamura K., Oyaizu H. 2000; A deeply branched novel phylotype found in Japanese paddy soils. Microbiology 146:2309–2315
    [Google Scholar]
  30. Kishino H., Miyata T., Hasegawa M. 1990; Maximum likelihood inference of protein phylogeny, and the origin of chloroplast. J Mol Evol 31:151–160 [CrossRef]
    [Google Scholar]
  31. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  32. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  33. Kushida H. 1980; An improved embedding method using ERL 4206 and Quetol 653. J Electron Microsc 29:193–194
    [Google Scholar]
  34. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  35. Lanoil B. D., Sassen R., La Duc M. T., Sweet S. T., Nealson K. H. 2001; Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67:5143–5153 [CrossRef]
    [Google Scholar]
  36. Li L., Kato C., Horikoshi K. 1999; Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8:659–677 [CrossRef]
    [Google Scholar]
  37. Liu W.-T., Nakamura K., Matsuo T., Mino T. 1997; Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactor-effect of the P/C feeding ratio. Water Res 31:1430–1438 [CrossRef]
    [Google Scholar]
  38. Liu W.-T., Nielsen A. T., Wu J.-H., Tsai C.-S., Matsuo Y., Molin S. 2001; In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3:110–122 [CrossRef]
    [Google Scholar]
  39. Madrid V. M., Aller J. Y., Aller R. C., Chistoserdov A. Y. 2001; High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisions. FEMS Microbiol Ecol 37:197–209 [CrossRef]
    [Google Scholar]
  40. Magee C. M., Rodeheaver G., Edgerton R. F., Edlich R. F. 1975; A more reliable Gram staining technique for diagnosis of surgical infections. Am J Surg 130:341–346 [CrossRef]
    [Google Scholar]
  41. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Tokiwa Y., Stratton H. M. 2000; Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603 [CrossRef]
    [Google Scholar]
  42. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y. 1995; Microlunatus phosphovorus gen. nov., sp. nov. a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22 [CrossRef]
    [Google Scholar]
  43. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. 1986; The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55
    [Google Scholar]
  44. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  46. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  47. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–651Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Swofford D. L. 2002 paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  49. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  50. Valinsky L., Della Vedova G., Scupham A. J.8 other authors 2002; Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl Environ Microbiol 68:3243–3250 [CrossRef]
    [Google Scholar]
  51. Webster N. S., Wilson K. J., Blackall L. L., Hill R. T. 2001; Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile . Appl Environ Microbiol 67:434–444 [CrossRef]
    [Google Scholar]
  52. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  53. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02520-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02520-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error