1887

Abstract

In the course of a screening programme in hypersaline habitats of southern Spain to isolate halophilic bacteria that are able to produce different extracellular enzymes, a novel, moderately halophilic bacterium (strain SM19) that displays lipolytic activity has been isolated and characterized. Strain SM19 is a Gram-negative rod that grows optimally in culture media that contain 7·5 % NaCl. The DNA G+C content was 57·0 mol%. According to phenotypic and genotypic data, this strain was assigned to the genus . However, 16S rDNA sequence similarity between strain SM19 and species of the genus was <96·7 %; this value is sufficiently low to propose its designation as a novel species. In addition, DNA–DNA hybridization with reference strains of close phylogenetic relatives was between 11 and 19 %. On the basis of these data, the inclusion of strain SM19 in the genus as a novel species is proposed, with the name sp. nov. The type strain of the novel species is SM19 (=DSM 15157=NCIMB 13907=CIP 107627=CCM 7048).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02528-0
2003-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531383.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02528-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  2. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  4. Button D. K., Robertson B. R. 2001; Determination of DNA content of aquatic bacteria by flow cytometry. Appl Environ Microbiol 67:1636–1645 [CrossRef]
    [Google Scholar]
  5. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef]
    [Google Scholar]
  6. Eilers H., Pernthaler J., Glöckner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  7. Garcia M. T., Ventosa A., Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola . Int J Syst Bacteriol 37:251–256 [CrossRef]
    [Google Scholar]
  8. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  9. Jaeger K. E., Dijkstra B. W., Reetz M. T. 1999; Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351 [CrossRef]
    [Google Scholar]
  10. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp 655–681Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  11. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. In Halophilic Bacteria vol. I pp 109–140Edited by Rodríguez-Valera F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  12. Ludwig W., Strunk O. 1996; arb – a software environment for sequence data. http://www.arb-home.de/
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  15. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  16. Nguyen B. H., Denner E. B. M., Dang T. C. H., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  17. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp 217–296Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  18. Pandey A., Benjamin S., Soccol C. R., Nigam P., Krieger N., Soccol V. T. 1999; The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131
    [Google Scholar]
  19. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila , a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [CrossRef]
    [Google Scholar]
  20. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [CrossRef]
    [Google Scholar]
  21. Spröer C., Lang E., Hobeck P., Burghardt J., Stackebrandt E., Tindall B. J. 1998; Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus . Int J Syst Bacteriol 48:1445–1448 [CrossRef]
    [Google Scholar]
  22. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  23. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  24. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.2Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  25. Winkler U. K., Stuckmann M. 1979; Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens . J Bacteriol 138:663–670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02528-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02528-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error