1887

Abstract

Strain N35 was isolated from surface-sterilized wheat roots and is a Gram-negative, aerobic, motile straight rod. Strain N35 tested oxidase-positive and catalase-negative and grew optimally at pH 7.0, 30 °C and in the absence of NaCl. 16S rRNA gene sequence analysis showed over 97 % sequence similarity to strains of the environmental species , , , , and , as well as , and . DNA–DNA hybridization between strain N35 and phylogenetically closely related type strains was 25.3–55.7 %, which clearly separates the strain from these closely related species. Additionally, phenotypic properties, such as substrate metabolism profiles as determined by a Biolog GN2 assay and cell-wall fatty acid profiles, particularly contents of the fatty acids C, Cω7/, C, C cyclo, C cyclo and C cyclo, facilitated the differentiation of the newly isolated strain N35 from its closest relatives. The isolate underwent phenotypic variation at high frequency in laboratory media. The DNA G+C content was 64.9 mol%. We propose that strain N35 is classified as a representative of a novel species within the genus and suggest the name sp. nov. The type strain is strain N35 ( = DSM 23535  = LMG 25767).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025296-0
2011-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2589.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025296-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  2. Choi J.-H., Kim M.-S., Roh S. W., Bae J.-W. 2010; Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60:2715–2718 [CrossRef]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  5. Gardan L., Dauga C., Prior P., Gillis M., Saddler G. S. 2000; Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 50:235–246 [View Article][PubMed]
    [Google Scholar]
  6. Gardan L., Stead D. E., Dauga C., Gillis M. 2003; Acidovorax valerianellae sp. nov., a novel pathogen of lamb’s lettuce [Valerianella locusta (L.) Laterr.]. Int J Syst Evol Microbiol 53:795–800 [View Article][PubMed]
    [Google Scholar]
  7. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G. 2006; Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov.. Int J Syst Evol Microbiol 56:569–576 [View Article][PubMed]
    [Google Scholar]
  8. Heylen K., Lebbe L., De Vos P. 2008; Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 58:73–77 [View Article][PubMed]
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  10. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [View Article][PubMed]
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  12. Olsen G. J., Matsuda H., Hagström R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  13. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  15. Schaad N. W., Postnikova E., Sechler A., Claflin L., Vidaver A., Jones J., Agarkova I., Ignatov A., Dickstein E., Ramundo B. 2008; Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978 comb. nov., and proposal of A. oryzae sp. nov.. Syst Appl Microbiol 31:434–446 [View Article][PubMed]
    [Google Scholar]
  16. Schulze R., Spring S., Amann R., Huber I., Ludwig W., Schleifer K. H., Kämpfer P. 1999; Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov.. Syst Appl Microbiol 22:205–214[PubMed] [CrossRef]
    [Google Scholar]
  17. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [View Article][PubMed]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  19. Willems A., Gillis M. 2005; Genus II. Acidovorax Willems, Falsen, Pot, Jantzen, Hoste, Vandamme, Gillis, Kersters and De Ley 1990, 394VP . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 696–703 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer; [View Article]
    [Google Scholar]
  20. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov.. Int J Syst Bacteriol 40:384–398 [View Article][PubMed]
    [Google Scholar]
  21. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. 1992; Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci . Int J Syst Bacteriol 42:107–119 [View Article][PubMed]
    [Google Scholar]
  22. Zelles L. 1997; Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294 [View Article][PubMed]
    [Google Scholar]
  23. Zelles L. 1999; Identification of single cultured micro-organisms based on their whole-community fatty acid profiles, using an extended extraction procedure. Chemosphere 39:665–682 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025296-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025296-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error