1887

Abstract

Previously undescribed, homoacetogenic bacteria were isolated from gut homogenates of the soil-feeding termite . The isolates were slightly curved, banana-shaped rods (0·6–0·7×1·3–7·0 μm) and were motile by one or more lateral flagella. In older cultures, cells formed club-like sporangia that developed into terminal, heat-resistant endospores. Cells stained Gram-positive but were Gram-negative in the KOH test. The isolates were mesophilic and grew homoacetogenically on H/CO and -lactate. Strain TmAO3, which was characterized further, also grew homoacetogenically on pyruvate, citrate, -alanine, -mannitol, ethanol, formate and methanol. Succinate was decarboxylated to propionate; fumarate, -malate and oxaloacetate were fermented to propionate and acetate. Hexoses were not used as substrates. Resting cells had a large capacity for hydrogen-dependent oxygen reduction [826 nmol min (mg protein)], which enabled them to initiate growth in non-reduced basal medium that originally contained up to 1·5 kPa oxygen in the headspace, although growth commenced only after the medium had been rendered anoxic. Redox difference spectra of cell extracts indicated the presence of membrane-bound -type cytochrome(s). Comparative 16S rRNA gene sequence analysis revealed that strain TmAO3 belongs to a subgroup of the phylum of Gram-positive bacteria that is characterized by low DNA G+C content and a Gram-negative cell wall. It is related most closely to representatives of the genus . Based on morphological and physiological properties and on 16S rRNA gene sequence similarity of 94–97 % to other species, the isolates are assigned to sp. nov. (type strain, TmAO3=DSM 13326=ATCC BAA-625).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02534-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531397.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02534-0&mimeType=html&fmt=ahah

References

  1. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900
    [Google Scholar]
  2. Boga H. I., Brune A. 2003; Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786 [CrossRef]
    [Google Scholar]
  3. Brauman A., Kane M. D., Labat M., Breznak J. A. 1992; Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387 [CrossRef]
    [Google Scholar]
  4. Breznak J. 1994; Acetogenesis from carbon dioxide in termite guts. In Acetogenesis pp 303–330Edited by Drake H. L. New York: Chapman & Hall;
    [Google Scholar]
  5. Breznak J. A., Blum J. S. 1991; Mixotrophy in the termite gut acetogen, Sporomusa termitida . Arch Microbiol 156:105–110 [CrossRef]
    [Google Scholar]
  6. Breznak J. A., Switzer J. M. 1986; Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630
    [Google Scholar]
  7. Breznak J. A., Switzer J. M., Seitz H.-J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288 [CrossRef]
    [Google Scholar]
  8. Brune A. 1998; Termite guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21 [CrossRef]
    [Google Scholar]
  9. Brune A., Schink B. 1990; A complete citric acid cycle in assimilatory metabolism of Pelobacter acidigallici , a strictly anaerobic, fermenting bacterium. Arch Microbiol 154:394–399
    [Google Scholar]
  10. Brune A., Frenzel P., Cypionka H. 2000; Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710
    [Google Scholar]
  11. Cypionka H. 2000; Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848 [CrossRef]
    [Google Scholar]
  12. Dehning I., Stieb M., Schink B. 1989; Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426 [CrossRef]
    [Google Scholar]
  13. Dickerson R. E., Timkovich R. 1975; Cytochrome c . In The Enzymes vol XI part A, pp 397–547Edited by Boyer P. D. New York: Academic Press;
    [Google Scholar]
  14. Diekert G. 1992; The acetogenic bacteria. In The Prokaryotes , 2nd edn. pp 517–529Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  15. Diekert G., Wohlfarth G. 1994; Metabolism of homoacetogens. Antonie van Leeuwenhoek 66:209–221 [CrossRef]
    [Google Scholar]
  16. Drake H. L., Daniel S. L., Matthies C., Küsel K. 1994; Acetogenesis: reality in the laboratory, uncertainty elsewhere. In Acetogenesis pp 273–302Edited by Drake H. L. New York: Chapman & Hall;
    [Google Scholar]
  17. Drake H. L., Daniel S. L., Küsel K., Matthies C., Kuhner C., Braus-Stromeyer S. 1997; Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?. Biofactors 6:13–24 [CrossRef]
    [Google Scholar]
  18. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  19. Hermann M., Popoff M.-R., Sebald M. 1987; Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Syst Bacteriol 37:93–101 [CrossRef]
    [Google Scholar]
  20. Ji R., Kappler A., Brune A. 2000; Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291 [CrossRef]
    [Google Scholar]
  21. Kambhampati S., Eggleton P. 2000; Taxonomy and phylogenetics of Isoptera . In Termites: Evolution, Sociality, Symbioses, Ecology pp 1–23Edited by Abe T., Bignell D. E., Higashi M. Dordrecht: Kluwer;
    [Google Scholar]
  22. Kamlage B., Blaut M. 1993; Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups. J Bacteriol 175:3043–3050
    [Google Scholar]
  23. Kane M. D., Breznak J. A. 1991; Acetonema longum gen. nov. sp. nov. an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis . Arch Microbiol 156:91–98 [CrossRef]
    [Google Scholar]
  24. Kane M. D., Brauman A., Breznak J. A. 1991; Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus . Arch Microbiol 156:99–104 [CrossRef]
    [Google Scholar]
  25. Karnholz A., Küsel K., Gößner A., Schramm A., Drake H. L. 2002; Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009 [CrossRef]
    [Google Scholar]
  26. Kuhner C. H., Frank C., Grießhammer A., Schmittroth M., Acker G., Gößner A., Drake H. L. 1997; Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358 [CrossRef]
    [Google Scholar]
  27. Kuhnigk T., Branke J., Krekeler D., Cypionka H., König H. 1996; A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149 [CrossRef]
    [Google Scholar]
  28. Küsel K., Karnholz A., Trinkwalter T., Devereux R., Acker G., Drake H. L. 2001; Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741 [CrossRef]
    [Google Scholar]
  29. Leadbetter J. R., Schmidt T. M., Graber J. R., Breznak J. A. 1999; Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689 [CrossRef]
    [Google Scholar]
  30. Ludwig W. 1995; Sequence databases. In Molecular Microbial Ecology Manual chapter 3.3.5 pp 1–22Edited by Akkermans A. D. L., van Elsas J. D. , de Bruijn F. J. Dordrecht: Kluwer;
    [Google Scholar]
  31. Ludwig W., Strunk O. 1996 arb: a software environment for sequence data http://www.arb-home.de
  32. Möller B., Ossmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa , a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139388–396 [CrossRef]
    [Google Scholar]
  33. Ollivier B., Cord-Ruwisch R., Lombardo A., Garcia J.-L. 1985; Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142:307–310 [CrossRef]
    [Google Scholar]
  34. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae . In The Prokaryotes pp 279–289Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  35. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  36. Rosencrantz D., Rainey F. A., Janssen P. H. 1999; Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65:3526–3533
    [Google Scholar]
  37. Schink B. 1994; Diversity, ecology, and isolation of acetogenic bacteria. In Acetogenesis pp 197–235Edited by Drake H. L. New York: Chapman & Hall;
    [Google Scholar]
  38. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  39. Schmitt-Wagner D., Brune A. 1999; Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites ( Cubitermes spp.). Appl Environ Microbiol 65:4490–4496
    [Google Scholar]
  40. Springer N., Ludwig W., Drozanski W., Amann R., Schleifer K.-H. 1992; The phylogenetic status of Sarcobium lyticum , an obligate intracellular bacterial parasite of small amoebae. FEMS Microbiol Lett 96:199–202 [CrossRef]
    [Google Scholar]
  41. Tholen A., Brune A. 1999; Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites ( Cubitermes spp.). Appl Environ Microbiol 65:4497–4505
    [Google Scholar]
  42. Tholen A., Schink B., Brune A. 1997; The gut microflora of Reticulitermes flavipes , its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149 [CrossRef]
    [Google Scholar]
  43. Willems A., Collins M. D. 1995; Phylogenetic placement of Dialister pneumosintes (formerly Bacteroides pneumosintes ) within the Sporomusa subbranch of the Clostridium subphylum of the gram-positive bacteria. Int J Syst Bacteriol 45:403–405 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02534-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02534-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error