1887

Abstract

A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0·2–0·22×8–18 μm. Growth of the strain was observed between 10 and 44 °C (optimum 37 °C), in 2–12 % (w/v) NaCl (optimum 3 % NaCl) and between pH 8 and 10·5 (optimum pH 9·5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing -glucose, fructose, maltose, sucrose, starch and -mannitol. End products of glucose fermentation were H, acetate, ethanol and formate. Strain ASpG1 was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G+C content of its DNA was 58·5 mol%. DNA–DNA hybridization analysis of strain ASpG1 with its most closely related species, Z-7491, revealed a hybridization value of only 48·7 %. On the basis of its physiological and molecular properties, strain ASpG1 appears to represent a novel species of the genus , for which the name is proposed (type strain ASpG1=ATCC BAA-392=DSM 14872).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02535-0
2003-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02535-0&mimeType=html&fmt=ahah

References

  1. Aksenova H. Y., Rainey F. A., Janssen P. H., Zavarzin G. A., Morgan H. W. 1992; Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int J Syst Bacteriol 42:175–177 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology pp. 2.10–2.11 New York: Wiley;
    [Google Scholar]
  4. Barth A. L., Stricker J. A., Margulis L. 1991; Search for eukaryotic motility proteins in spirochetes: immunological detection of a tektin-like protein in Spirochaeta halophila . Biosystems 24:313–319 [CrossRef]
    [Google Scholar]
  5. Bermudes D., Fracek S. P. Jr, Laursen R. A., Margulis L., Obar R., Tzertzinis G. 1987; Tubulinlike protein from Spirochaeta bajacaliforniensis . Ann N Y Acad Sci 503:515–527 [CrossRef]
    [Google Scholar]
  6. Bischoff J. L., Herbst D. B., Rosenbauer R. J. 1991 Gaylussite formation at Mono Lake California, USA: Geochim Cosmochim Acta 55:1743–1747 [CrossRef]
    [Google Scholar]
  7. Bischoff J. L., Stine S., Rosenbauer R. J., Fitzpatrick J. A., Stafford T. W. Jr 1993; Ikaite precipitation by mixing of shoreline springs and lake water. Mono Lake, California, USA: Geochim Cosmochim Acta 57:3855–3856 [CrossRef]
    [Google Scholar]
  8. Breznak J. A., Canale-Parola E. 1975; Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol 105:1–12 [CrossRef]
    [Google Scholar]
  9. Canale-Parola E. 1977; Physiology and evolution of Spirochetes. Bacteriol Rev 41:181–204
    [Google Scholar]
  10. Canale-Parola E. 1980; Revival of the names Spirochaeta litoralis , Spirochaeta zuelzerae , and Spirochaeta aurantia . Int J Syst Bacteriol 30:594 [CrossRef]
    [Google Scholar]
  11. Canale-Parola E. 1984; Genus I. Spirochaeta Ehrenberg 1835, 313AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 39–46Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Canale-Parola E. 1992; Free-living saccharolytic spirochetes: the genus Spirochaeta . In The Prokaryotes , 2nd edn. pp 3524–3536Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  13. Council T. C., Bennett P. C. 1993; Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds. Geology 21:971–974 [CrossRef]
    [Google Scholar]
  14. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Biochemistry 12:133–142
    [Google Scholar]
  15. Fracek S. P. Jr, Stolz J. F. 1985; Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa. Baja California Norte, Mexico: Arch Microbiol 142317–325 [CrossRef]
  16. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg R. N., Phillips G. B.editors 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153 [CrossRef]
    [Google Scholar]
  18. Greenberg E. P., Canale-Parola E. 1976; Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. Arch Microbiol 110:185–194 [CrossRef]
    [Google Scholar]
  19. Harwood C. S., Jannasch H. W., Canale-Parola E. 1982; Anaerobic Spirochete from a deep-sea hydrothermal vent. Appl Environ Microbiol 44:234–237
    [Google Scholar]
  20. Harwood C. S., Canale-Parola E. 1983; Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int J Syst Bacteriol 33:573–579 [CrossRef]
    [Google Scholar]
  21. Hespell R. B., Canale-Parola E. 1970; Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch Microbiol 74:1–18
    [Google Scholar]
  22. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology vol 3B pp 117–132Edited by Norris J. R., Ribbons D. W. New York: Academic Press;
    [Google Scholar]
  23. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 18:33–74
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  25. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  26. Magot M., Fardeau M.-L., Arnauld O., Lanau C., Olivier B., Thomas P., Patel B. K. C. 1997; Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Micobiol Lett 155:185–191 [CrossRef]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  28. Munson D., Obar R., Tzertzinis G., Margulis L. 1993; The ‘tubulin-like’ S1 protein of Spirochaeta is a member of the hsp65 stress protein family. Biosystems 31:161–167 [CrossRef]
    [Google Scholar]
  29. Oremland R. S., Miller L. G. 1993; Biochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes. In The Future of Energy Gases pp 439–452Edited by Howell D. USGS Prof. Paper 1570
    [Google Scholar]
  30. Paster B. J., Dewhirst F. E., Weisburg W. G.7 other authors 1991; Phylogenetic analysis of the spirochetes. J Bacteriol 19:6101–6109
    [Google Scholar]
  31. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Thermophilic anaerobic spirochetes in New Zealand hot springs. FEMS Microbiol Lett 26:101–106 [CrossRef]
    [Google Scholar]
  32. Pohlschroeder M., Leschine S. B., Canale-Parola E. 1994; Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum . Arch Microbiol 161:17–24
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Teal T. H., Chapman M., Guillemette T., Margulis L. 1996; Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy. Microbiologia 12:571–584
    [Google Scholar]
  35. Tierney T. 1997 Geology of the Mono Basin pp 1–73 Mono Lake Committee, Lee Vining, California: Kutsavi Press;
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  37. Whitman W. B., Ankwanda E., Wolfe R. S. 1982; Nutrition and carbon metabolism of Methanococcus voltae . J Bacteriol 149:852–863
    [Google Scholar]
  38. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  39. Zhilina T. N., Zavarzin G. A., Rainey F., Kevbrin V. V., Kostrikina N. A., Lysenko A. M. 1996; Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. Int J Syst Bacteriol 46:305–312 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02535-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02535-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error