1887

Abstract

A Gram-negative, rod-shaped, non-motile, strictly aerobic bacterium, strain S3-63, was isolated from desert sand of Xinjiang, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S3-63 had highest similarity to type strains of the genus , i.e. H32 (97.2 % similarity), MSW-14 (95.9 %), KCTC 22735 (95.5 %), JCS350 (95.1 %), KCTC 22736 (95.1 %), SW-109 (95.0 %) and LMG 23789 (93.5 %). Growth occurred at 20–37 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 8.0) and in 0–3 % (w/v) NaCl (optimum 1 %). The major respiratory quinone was ubiquinone-10 and the predominant cellular fatty acids were Cω7 (50.8 %), summed feature 3 (Cω7 and/or Cω6; 12.6 %), C (12.3 %), C 2-OH (7.3 %) and Cω6 (4.5 %). The DNA G+C content was 64.6 mol%. Therefore, the phylogenetic, physiological and chemotaxonomic data demonstrated that strain S3-63 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is S3-63 ( = CCTCC AB 207166 = CIP 110125). An emended description of the genus is provided.

Funding
This study was supported by the:
  • R & D Infrastructure and Facility Development Program
  • Ministry of Science and Technology of the People’s Republic of China (Award 2005DKA21208)
  • KLZJ Foundation of Xinjiang Uyghur Autonomous Region (Award 201091236)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025437-0
2012-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/28.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025437-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the Taxonomy of Flavobacterium and Cytophaga-like Bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  2. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I. 2005; Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  10. Golyshina O. V., Pivovarova T. A., Karavaiko G. I., Kondratéva T. F., Moore E. R., Abraham W. R., Lünsdorf H., Timmis K. N., Yakimov M. M., Golyshin P. N. 2000; Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50:997–1006 [View Article][PubMed]
    [Google Scholar]
  11. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  12. Kumar N. R., Nair S., Langer S., Busse H. J., Kämpfer P. 2008; Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 58:839–844 [View Article][PubMed]
    [Google Scholar]
  13. Kwon K. K., Woo J. H., Yang S.-H., Kang J. H., Kang S. G., Kim S. J., Sato T., Kato C. 2007; Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov.. Int J Syst Evol Microbiol 57:2207–2211 [View Article][PubMed]
    [Google Scholar]
  14. Lai Q., Yuan J., Shao Z. 2009; Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 59:2973–2976 [View Article][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  17. Park S. C., Baik K. S., Choe H. N., Lim C. H., Kim H. J., Ka J. O., Seong C. N. 2011; Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:709–715[PubMed] [CrossRef]
    [Google Scholar]
  18. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Seo S. H., Lee S. D. 2010; Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 60:307–311 [View Article][PubMed]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  25. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. 2001; DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51:1315–1322[PubMed]
    [Google Scholar]
  26. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  27. Yoon J.-H., Kang K. H., Yeo S.-H., Oh T.-K. 2005; Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:1167–1170 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025437-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025437-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error