1887

Abstract

A thermo-acidophilic endospore-forming bacterium was isolated from a mixed fruit juice. The organism, strain 3A, was rod-shaped, grew aerobically at 30–60 °C (optimum 45–50 °C), pH 3·0–6·0 (optimum pH 4·0–4·5) and produced acid from various sugars. It contained menaquinone-7 as the major isoprenoid quinone. The G+C content of the DNA was 53·1 mol%. The predominant cellular fatty acids of the strain were iso-C, anteiso-C, iso-C, iso-C and anteiso-C, but -alicyclic fatty acids, which are characteristic of the genus , were not found in the strain. Phylogenetic analyses based on both 16S rRNA and (DNA gyrase B subunit gene) gene sequences showed that strain 3A falls into the cluster, validated by significant bootstrap values. However, strain 3A did not show a close relationship to the other species of the cluster. The level of 16S rDNA similarity between strain 3A and other strains of the cluster was between 92·5 and 95·5 %. The level of sequence similarity between strain 3A and other strains of the cluster was between 68·5 and 74·4 %. DNA–DNA hybridization values between strain 3A and phylogenetically related strains of the genera , and were under 13 %, indicating that strain 3A represents a distinct species. On the basis of these results, strain 3A should be classified as a novel species. The name is proposed for this organism. The type strain of is strain 3A (=DSM 14955=IAM 14988).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02546-0
2003-09-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531537.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02546-0&mimeType=html&fmt=ahah

References

  1. Adachi T., Mizuuchi M., Robinson E. A., Appella E., O'Dea M. H., Gellert M., Mizuuchi K. 1987; DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy. Nucleic Acids Res 15:771–784 [CrossRef]
    [Google Scholar]
  2. Albuquerque L., Rainey F. A., Chung A. P., Sunna A., Nobre M. F., Grote R., Antranikian G., De Costa M. S. 2000; Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int J Syst Evol Microbiol 50:451–457 [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Darland G., Brock T. D. 1971; Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15 [CrossRef]
    [Google Scholar]
  5. Deinhard G., Blanz P., Poralla K., Altan E. 1987a; Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10:47–53 [CrossRef]
    [Google Scholar]
  6. Deinhard G., Saar J., Krischke W., Poralla K. 1987b; Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω -cycloheptane fatty acids. Syst Appl Microbiol 10:68–73 [CrossRef]
    [Google Scholar]
  7. De Rosa M., Gambacorta A., Minale L., Bu'Lock J. D. 1971; Cyclohexane fatty acids from a thermophilic bacterium. Chem Commun 1019:1334
    [Google Scholar]
  8. Dufresne S., Bousquet J., Boissinot M., Guay R. 1996; Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30:783–791
    [Google Scholar]
  11. Fortina M. G., Pukall R., Schumann P., Mora D., Parini C., Manachini P. L., Stackebrandt E. 2001; Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Anderson et al ., 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455
    [Google Scholar]
  12. Golovacheva R. S., Karavaiko G. I. 1979; Sulfobacillus – a new genus of spore-forming thermophilic bacteria. Microbiology (English translation of Mikrobiologiya) 47:658–665
    [Google Scholar]
  13. Goto K., Omura T., Hara Y., Sadaie Y. 2000; Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus . J Gen Appl Microbiol 46:1–8 [CrossRef]
    [Google Scholar]
  14. Goto K., Matsubara H., Mochida K., Matsumura T., Hara Y., Niwa M., Yamasato K. 2002a; Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω -cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113
    [Google Scholar]
  15. Goto K., Tanimoto Y., Tamura T., Mochida K., Arai D., Asahara M., Suzuki M., Tanaka H., Inagaki K. 2002b; Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6:333–340 [CrossRef]
    [Google Scholar]
  16. Goto K., Mochida K., Asahara M., Suzuki M., Yokota A. 2002c; Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48243–250 [CrossRef]
    [Google Scholar]
  17. Heyndrickx M., Lebbe L., Vancanneyt M.7 other authors 1997; A polyphasic reassessment of the genus Aneurinibacillus , reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al ., 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended description of A. aneurinilyticus corrig., A. migulanus , and A. thermoaerophilus . Int J Syst Bacteriol 47:808–817 [CrossRef]
    [Google Scholar]
  18. Hippchen B., Roll A., Poralla K. 1981; Occurrence in soil of thermo-acidophilic bacilli possessing ω -cyclohexane fatty acids and hopanoids. Arch Microbiol 129:53–55 [CrossRef]
    [Google Scholar]
  19. Hiraishi A., Inagaki K., Tanimoto Y., Iwasaki M., Kishimoto N., Tanaka H. 1997; Phylogenetic characterization of a new thermoacidophilic bacterium isolated from hot spring in Japan. J Gen Appl Microbiol 43:295–304 [CrossRef]
    [Google Scholar]
  20. Kannenberg E., Blume A., Poralla K. 1984; Properties of ω -cyclohexane fatty acids in membranes. FEBS 172:331–334 [CrossRef]
    [Google Scholar]
  21. Kasai H., Tamura T., Harayama S. 2000; Intrageneric relationship among Micromonospora species deduced from gyrB -based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134 [CrossRef]
    [Google Scholar]
  22. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequence. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  23. Krischke W., Poralla K. 1990; Properties of Bacillus acidocaldarius mutants deficient in ω -cyclohexyl fatty acid biosynthesis. Arch Microbiol 153:463–469 [CrossRef]
    [Google Scholar]
  24. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  25. Kusano K., Yamada H., Niwa M., Yamasato K. 1997; Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω -cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831 [CrossRef]
    [Google Scholar]
  26. Lake J. A. 1987; A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191
    [Google Scholar]
  27. Manachini P. L., Fortina M. G., Parini C., Craveri R. 1985; Bacillus thermoruber sp. nov. rev. a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35493–496 [CrossRef]
    [Google Scholar]
  28. Matsubara H., Goto K., Matsumura T., Mochida K., Iwaki M., Niwa M., Yamasato K. 2002; Alicyclobacillus acidiphilus sp. nov., a new thermo-acidophilic ω -alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52:1681–1685 [CrossRef]
    [Google Scholar]
  29. Moore B. S., Walker K., Tornus I., Handa S., Poralla K., Floss H. G. 1997; Biosynthetic studies of ω -cycloheptyl fatty acids in Alicyclobacillus cycloheptanicus . Formation of cycloheptanecarboxylic acid from phenylacetic acid. J Org Chem 62:2173–2185 [CrossRef]
    [Google Scholar]
  30. Nazina T. N., Tourova T. P., Poltaraus A. B.8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: description of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans , Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51433–446
    [Google Scholar]
  31. Nicolaus B., Improta R., Manca C. M., Lama L., Esposito E., Gambacorta A. 1998; Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 19:133–141 [CrossRef]
    [Google Scholar]
  32. Norris P. R., Clark D. A., Owen J. P., Waterhouse S. 1996; Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783 [CrossRef]
    [Google Scholar]
  33. Poralla K., Härtner T., Kannenberg E. 1984; Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius . FEBS Microbiol Lett 23:253–256 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: A new method for reconstruction of phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Suzuki K., Saito K., Kawaguchi A., Okuda S., Komagata K. 1981; Occurrence of ω -cyclohexyl fatty acids in Curtobacterium pusillum strains. J Gen Appl 27:261–266 [CrossRef]
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: Improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 76:4350–4354
    [Google Scholar]
  38. Tomimura E., Zeman N. W., Frankiewicz J. R., Teague W. M. 1990; Description of Bacillus naganoensis sp. nov. Int J Syst Bacteriol 40:123–125 [CrossRef]
    [Google Scholar]
  39. Touzel J. P., O'Donohue M., Debeire P., Samain E., Breton C. 2000; Thermobacillus xylanilyticus gen. nov., sp. nov. a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320 [CrossRef]
    [Google Scholar]
  40. Tsuruoka N., Isono Y., Shida O., Hemmi H., Nakayama T., Nishino T. 2003; Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Evol Microbiol 53:1081–1084 [CrossRef]
    [Google Scholar]
  41. Uchino F., Doi S. 1967; Acido-thermophilic bacteria from thermal waters. Agric Biol Chem 31:817–822 [CrossRef]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  43. Wisotzkey J. D., Jurtshuk J. R. P., Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  44. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  45. Yamazaki K., Tezuka H., Shinano H. 1996; Isolation and identification of Alicyclobacillus acidoterrestris from acid beverages. Biosci Biotechnol Biochem 60:543–545 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02546-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02546-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

IMAGE

Supplementary material 2

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error