1887

Abstract

Several cold-adapted strains isolated from a variety of algal-rich Antarctic and Southern Ocean samples formed three distinct groups within the class , phylogenetically distant from other cultivated species. The first taxon, designated gen. nov., sp. nov., was isolated from sea ice and from saline lake cyanobacterial mats and includes non-motile, strictly aerobic, saccharolytic rod-like or serpentine strains that were most closely related to the genus according to 16S rDNA sequence analysis (sequence similarity 0·85). The second taxon, designated gen. nov., sp. nov., isolated from sea ice and from continental shelf sediment, formed gliding, rod-like cells that were facultatively anaerobic with a fermentative metabolism. The third taxon, designated gen. nov., sp. nov., isolated from Southern Ocean particulates and from quartz stone subliths, included strictly aerobic, pleomorphic rod-like cells. and were most closely allied with ‘ var. ’, which, on the basis of its distinctive taxonomic traits, is also proposed as a new genus and species, gen. nov., sp. nov. It is proposed that the three genera , and belong to a new family, fam. nov. (type genus ), as they possess generally similar morphological and ecophysiological characteristics and form a common and distinct clade within class .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02553-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531343.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02553-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  2. Bano N., Hollibaugh J. T. 2002; Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518 [CrossRef]
    [Google Scholar]
  3. Barbeyron T., L'Haridon S., Corre E., Kloareg B., Potin P. 2001; Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga ] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51985–997 [CrossRef]
    [Google Scholar]
  4. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym) Cytophaga aquatilis Strohl and Tait 1978. Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  5. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  6. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  7. Bowman J. P., Nichols D. S. 2002; Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 52:1533–1541 [CrossRef]
    [Google Scholar]
  8. Bowman J. P., Brown M. V., Nichols D. S. 1997a; Biodiversity and ecophysiology of bacteria associated with Antarctic sea-ice. Antarctic Sci 9:134–142
    [Google Scholar]
  9. Bowman J. P., McCammon S. A., Brown J. L., Nichols P. D., McMeekin T. A. 1997b; Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov. psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677 [CrossRef]
    [Google Scholar]
  10. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997c; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  11. Bowman J. P., McCammon S. A., Brown J. L., McMeekin T. A. 1998a; Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov. sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222 [CrossRef]
    [Google Scholar]
  12. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A. 1998b; Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1441601–1609 [CrossRef]
    [Google Scholar]
  13. Bowman J. P., McCammon S. A., Gibson J. A. E., Nichols P. D., Robertson L. 2003; Prokaryotic metabolic activity and community structure within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2448–2462 [CrossRef]
    [Google Scholar]
  14. Brown M. V., Bowman J. P. 2001; A molecular phylogenetic survey of sea-ice microbial communities (SIMCO. FEMS Microbiol Ecol 35:267–275 [CrossRef]
    [Google Scholar]
  15. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov. a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 511997–2006 [CrossRef]
    [Google Scholar]
  16. Bull A. T., Ward A. C., Goodfellow M. 2000; Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606 [CrossRef]
    [Google Scholar]
  17. Cavalier-Smith T. 2002; The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76
    [Google Scholar]
  18. Cole J. J., Findlay S., Pace M. L. 1988; Bacterioplanktonic production in fresh and salt-water ecosystems: a crossover view. Mar Ecol Prog Ser 43:1–10 [CrossRef]
    [Google Scholar]
  19. Cottrell M. T., Kirchman D. L. 2000; Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. 1993 phylip (phylogenetic inference program package) version 3.57c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  21. Glöckner F. O., Fuchs B. M., Amann R. 1999; Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726
    [Google Scholar]
  22. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, Pirgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov. gas vacuolate polar marine bacteria of the Cytophaga Flavobacterium Bacteroides group and reclassification of ‘ Flectobacillus glomeratus ’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [CrossRef]
    [Google Scholar]
  23. Ivanova E. P., Nedashkovskaya O. I., Chun J.7 other authors 2001; Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 51:1987–1995 [CrossRef]
    [Google Scholar]
  24. Kirchman D. L. 2002; The ecology of Cytophaga - Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100
    [Google Scholar]
  25. Lewin R. A. 1969; A classification of flexibacteria. J Gen Microbiol 58:189–206 [CrossRef]
    [Google Scholar]
  26. Lewin R. A., Lounsbery D. M. 1969; Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol 58:145–170 [CrossRef]
    [Google Scholar]
  27. Mandel M., Lewin R. A. 1969; Deoxyribonucleic acid base composition of flexibacteria. J Gen Microbiol 58:171–178 [CrossRef]
    [Google Scholar]
  28. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  29. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium. tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 501055–1063 [CrossRef]
    [Google Scholar]
  30. Nakagawa Y., Yamasato K. 1996; Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603 [CrossRef]
    [Google Scholar]
  31. Nakagawa Y., Hamana K., Sakane T., Yamasato K. 1997; Reclassification of Cytophaga aprica (Lewin 1969). Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb. nov. and of Cytophaga diffluens (ex Stanier 1940, emend. Lewin 1969) Reichenbach 1989 in Persicobacter gen. nov. as Persicobacter diffluens comb. nov. Int J Syst Bacteriol 47220–223 [CrossRef]
    [Google Scholar]
  32. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [CrossRef]
    [Google Scholar]
  33. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci 5:149–160
    [Google Scholar]
  34. Nichols D., Bowman J., Sanderson K., Mancuso Nichols C., Lewis T., McMeekin T., Nichols P. D. 1999; Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240–246 [CrossRef]
    [Google Scholar]
  35. Raj H. D., Maloy S. R. 1990; Proposal of Cyclobacterium marinus gen. nov., comb. nov., for a marine bacterium previously assigned to the genus Flectobacillus . Int J Syst Bacteriol 40:337–347 [CrossRef]
    [Google Scholar]
  36. Reichenbach H. 1989; Genus Microscilla Pringsheim 1951, 140, emend. Lewin 1969, 194AL. In Bergey's Manual of Systematic Bacteriology vol. 3 pp 2071–2073Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  37. Simon M., Glöckner F. O., Amann R. 1999; Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat Microb Ecol 18:275–284 [CrossRef]
    [Google Scholar]
  38. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156 [CrossRef]
    [Google Scholar]
  39. Smith M. C., Bowman J. P., Scott F. J., Line M. A. 2000; Sublithic bacteria associated with Antarctic quartz stones. Antarctic Sci 12:177–184
    [Google Scholar]
  40. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02553-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error