1887

Abstract

The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus , the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA () genes were amplified successfully from cellular DNA extracted from two different isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60·7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga . Moreover, the trees identified spp. as members of a clade that included the heterotrophic species spp. and the mesotrophic species . The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that spp. are likely to possess -like organelles and organelle genomes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02559-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531719.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02559-0&mimeType=html&fmt=ahah

References

  1. Avery S. W., Undeen A. H. 1987; The isolation of microsporidia and other pathogens from concentrated ditch water. J Am Mosq Control Assoc 3:54–58
    [Google Scholar]
  2. Bhattacharya D., Medlin L. 1998; Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15 [CrossRef]
    [Google Scholar]
  3. Boucias D. G., Becnel J. J., White S. E., Bott M. 2001; In vivo and in vitro development of the protist Helicosporidium sp. J Eukaryot Microbiol 48:460–470 [CrossRef]
    [Google Scholar]
  4. Goolsby J. A., Tipping P. W., Center T. D., Driver F. 2000; Evidence for a new Cyrtobagous species (Coleoptera: Curculionidae) on Salvinia minima Baker in Florida. Southwest Entomol 25:299–301
    [Google Scholar]
  5. Hachtel W. 1996; DNA and gene expression in nonphotosynthetic plastids. In Handbook of Photosynthesis pp 349–355Edited by Pessarakli M. New York: Marcel Dekker;
    [Google Scholar]
  6. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  7. Hembree S. C. 1979; Preliminary reports of some mosquito pathogens from Thailand. Mosq News 39:575–582
    [Google Scholar]
  8. Huss V. A. R., Frank C., Hartmann E. C., Hirmer M., Kloboucek A., Seidel B. M., Wenzeler P., Kessler E. 1999; Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta. J Phycol 35:587–598 [CrossRef]
    [Google Scholar]
  9. Keilin D. 1921; On the life history of Helicosporidium parasiticum n. g. sp., a new species of protist parasite in the larvae of Dashelaea obscura Winn (Diptera: Ceratopogonidae) and in some other arthropods. Parasitology 13:97–113 [CrossRef]
    [Google Scholar]
  10. Kellen W. R., Lindegren J. E. 1973; New host records for Helicosporidium parasiticum . J Invertebr Pathol 22:296–297 [CrossRef]
    [Google Scholar]
  11. Knauf U., Hachtel W. 2002; The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii . Mol Genet Genomics 267:492–497 [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  13. Lang N. J. 1963; Electron-microscopic demonstration of plastids in Polytoma . J Protozool 10:333–339 [CrossRef]
    [Google Scholar]
  14. Lindegren J. E., Hoffman D. F. 1976; Ultrastructure of some developmental stages of Helicosporidium sp. in the navel orangeworm Paramyelois transitella . J Invertebr Pathol 27:105–113 [CrossRef]
    [Google Scholar]
  15. Morell V. 1996; TreeBASE: the roots of phylogeny. Science 273:569 [CrossRef]
    [Google Scholar]
  16. Nedelcu A. M. 2001; Complex pattern of plastid 16S rRNA gene evolution in nonphotosynthetic green algae. J Mol Evol 53:670–679 [CrossRef]
    [Google Scholar]
  17. Nedelcu A. M., Lee R. W., Lemieux C., Gray M. W., Burger G. 2000; The complete mitochondrial sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831 [CrossRef]
    [Google Scholar]
  18. Pekkarin M. 1993; Bucephalid trematode sporocysts in brackish-water Mytilus edulis , new host of a Helicosporidium sp. (Protozoa: Helicosporida). J Invertebr Pathol 61:214–216 [CrossRef]
    [Google Scholar]
  19. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  20. Purrini K. 1984; Light and electron microscope studies on Helicosporidium sp. parasitizing orbitid mites (Oribatei, Acarini) and collembola (Apterygota: Insecta) in forest soils. J Invertebr Pathol 44:18–27 [CrossRef]
    [Google Scholar]
  21. Sayre R. M., Clark T. B. 1978; Daphinia magna (Cladocera: Chydoroidea): a new host of a Helicosporidium sp. (Protozoa: Helicosporidia). J Invertebr Pathol 31:260–261 [CrossRef]
    [Google Scholar]
  22. Seif A. I., Rifaat M. M. 2001; Laboratory evaluation of a Helicosporidium sp. (Protozoa: Helicosporida) as an agent for the microbial control of mosquitoes. J Egypt Soc Parasitol 31:21–35
    [Google Scholar]
  23. Siu C., Swift H., Chiang K. 1976; Characterization of cytoplasmic and nuclear genomes in the colorless alga Polytoma . I. Ultrastructural analysis of organelles. J Cell Biol 69:352–370 [CrossRef]
    [Google Scholar]
  24. Swofford D. L. 2000 PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  25. Tajima F. 1993; Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607
    [Google Scholar]
  26. Tartar A., Boucias D. G., Adams B. J., Becnel J. J. 2002; Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta. Int J Syst Evol Microbiol 52:273–279
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  28. Turmel M., Otis C., Lemieux C. 1999; The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea : insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci U S A 96:10248–10253 [CrossRef]
    [Google Scholar]
  29. Weiser J. 1970; Helicosporidium parasiticum Keilin infection in the caterpillar of a hepialid moth in Argentina. J Protozool 17:440–445 [CrossRef]
    [Google Scholar]
  30. Wilson R. J. M. 2002; Progress with parasite plastids. J Mol Biol 319:257–274 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02559-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02559-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error