1887

Abstract

Phylogenetic, chemotaxonomic and metabolic data obtained for indicate that this species is not a member of the genus , but of the genus . Phylogenetically, it is closely related to and , but it can be differentiated from these species by its metabolic properties. It is therefore proposed to reclassify as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02574-0
2003-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531127.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02574-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Widdel F. 1986; Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18 [CrossRef]
    [Google Scholar]
  2. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  3. Devereux R., He S.-H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619
    [Google Scholar]
  4. Dowling N. J. E., Widdel F., White D. C. 1986; Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825
    [Google Scholar]
  5. Edlund A., Nichols P. D., Roffey R., White D. C. 1985; Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J Lipid Res 26:982–988
    [Google Scholar]
  6. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Gogotova G. I., Vainshtein M. B. 1989; Description of a sulfate-reducing bacterium, Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Microbiology (English translation of Mikrobiologiya 58:64–68
    [Google Scholar]
  9. Hippe H., Hagenauer H., Kroppenstedt R. M. 1997; Menadione requirement for sulfate-reduction in Desulfotomaculum aeronauticum , and emended species description. Syst Appl Microbiol 20:554–558 [CrossRef]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial SystematicsSociety for Applied Bacteriology Technical Series no 20 pp 173–199Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  14. Krumholz L. R., Harris S. H., Tay S. T., Suflita J. M. 1999; Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306
    [Google Scholar]
  15. Langendijk P. S., Kulik E. M., Sandmeier H., Meyer J., van der Hoeven J. S. 2001; Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int J Syst Evol Microbiol 51:1035–1044 [CrossRef]
    [Google Scholar]
  16. Meier A., Kirschner P., Schröder K.-H., Wolters J., Kroppenstedt R. M., Böttger E. C. 1993; Mycobacterium intermedium sp. nov. Int J Syst Bacteriol 43:204–209 [CrossRef]
    [Google Scholar]
  17. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  18. Rozanova E. P., Nazina T. N., Galushko A. S. 1988; Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov. sp. nov. Microbiology (English translation of Mikrobiologiya) 57514–520
    [Google Scholar]
  19. Rozanova E. P., Nazina T. N., Galushko A. S. 1994; Desulfomicrobium apsheronum gen. nov., sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB List no 49. Int J Syst Bacteriol 44:370–371 [CrossRef]
    [Google Scholar]
  20. Sharak Genthner B. R., Mundfrom G., Devereux R. 1994; Characterization of Desulfomicrobium escambium sp. nov. and proposal to assign Desulfovibrio desulfuricans Norway 4 to the genus Desulfomicrobium . Arch Microbiol 161:215–219 [CrossRef]
    [Google Scholar]
  21. Sharak Genthner B. R., Mundfrom G., Devereux R. 1996; Desulfomicrobium escambiense sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB List no 59. Int J Syst Bacteriol 46:1189–1190 [CrossRef]
    [Google Scholar]
  22. Sharak Genthner B. R., Friedman S. D., Devereux R. 1997; Reclassification of Desulfovibrio desulfuricans Norway 4 as Desulfomicrobium norvegicum comb. nov. and confirmation of Desulfomicrobium escambiense (corrig., formerly “ escambium ”) as a new species in the genus Desulfomicrobium . Int J Syst Bacteriol 47:889–892 [CrossRef]
    [Google Scholar]
  23. Taylor J., Parkes R. J. 1983; The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans . J Gen Microbiol 129:3303–3309
    [Google Scholar]
  24. Taylor J., Parkes R. J. 1985; Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J Gen Microbiol 131:631–642
    [Google Scholar]
  25. Tourova T. P., Nazina T. N., Poltaraus A. B., Osipov G. A. 1998; Phylogenetic position and chemotaxonomic characteristics of sulfate-reducing bacteria of the genus Desulfomicrobium . Microbiology (English translation of Mikrobiologiya) 67663–669
    [Google Scholar]
  26. Vainshtein M. B., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 4 pp 3352–3378Edited by Balows A., Trüper H. G., Dworkin M., Harder K.-H., Schleifer W. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02574-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02574-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error