1887

Abstract

An overview of the controversial proposal for the major eukaryote taxon ‘Excavata’ is presented. Excavata is predicted to include at least ten distinct groups: jakobids, , , , retortamonads, diplomonads, Heterolobosea, oxymonads, parabasalids and Euglenozoa. These ‘excavates' have broadly similar flagellar apparatus organizations, for which a ‘universal’ terminology is provided. Most, but not all, of these organisms share a distinctive suspension-feeding groove, as well as some or all of a set of seven other proposed cytoskeletal apomorphies. Cladistic analyses of morphological data do not resolve high-level relationships within Excavata. Excavate-rich molecular phylogenies recover some robust clades, but do not support or strongly refute the monophyly of Excavata. A partial classification for excavates is presented, with phylogenetic diagnoses for Excavata and for two novel taxon names, Fornicata (, retortamonads, diplomonads) and Preaxostyla (, oxymonads).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02578-0
2003-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531759.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02578-0&mimeType=html&fmt=ahah

References

  1. Archibald J. M., O'Kelly C. J., Doolittle W. F. 2002; The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. Mol Biol Evol 19:422–431 [CrossRef]
    [Google Scholar]
  2. Balamuth W., Bradbury P. C., Schuster F. L. 1983; Ultrastructure of the amoeboflagellate Tetramitus rostratus . J Protozool 30:445–455 [CrossRef]
    [Google Scholar]
  3. Baldauf S. L., Roger A. J., Wenk-Siefert I., Doolittle W. F. 2000; A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977 [CrossRef]
    [Google Scholar]
  4. Bernard C., Simpson A. G. B., Patterson D. J. 1997; An ultrastructural study of a free-living retortamonad, Chilomastix cuspidata (Larsen and Patterson 1990 n. comb. (Retortamonadida Protista). Eur J Protistol 33:254–265 [CrossRef]
    [Google Scholar]
  5. Bernard C., Simpson A. G. B., Patterson D. J. 2000; Some free-living flagellates (Protista) from anoxic habitats. Ophelia 52:113–142 [CrossRef]
    [Google Scholar]
  6. Broers C. A. M., Stumm C. K., Vogels G. D., Brugerolle G. 1990; Psalteriomonas lanterna gen. nov. sp. nov. a free-living amoeboflagellate isolated from freshwater anaerobic sediments. Eur J Protistol 25:369–380 [CrossRef]
    [Google Scholar]
  7. Broers C. A. M., Meijers H. H. M., Symens J. C., Stumm C. K., Vogels G. D., Brugerolle G. 1993; Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum . Eur J Protistol 29:98–105 [CrossRef]
    [Google Scholar]
  8. Brugerolle G. 1970; Sur l'ultrastructure et la position systématique de Pyrsonympha vertens (Zooflagellata, Pyrsonymphina. C R Acad Sci (Paris) 270:966–969 in French
    [Google Scholar]
  9. Brugerolle G. 1973; Etude ultrastructurale du trophozoite et du kyste chez le genre Chilomastix Aléxéieff, 1910 (Zoomastigophorea, Retortamonadida Grassé1952. J Protozool 20:574–585 in French [CrossRef]
    [Google Scholar]
  10. Brugerolle G. 1975a; Etude ultrastructurale du genre Enteromonas da Fonseca (Zoomastigophorea) et révision de l'ordre des Diplomonadida Wenyon. J Protozool 22:468–475 in French [CrossRef]
    [Google Scholar]
  11. Brugerolle G. 1975b; Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910. V. Nouvelle interprétation de l'organisation cellulaire de Giardia . Protistologica 11:99–109 in French
    [Google Scholar]
  12. Brugerolle G. 1975c; Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). VI. Caractères généraux des diplozoaires. Protistologica 11:111–118 in French
    [Google Scholar]
  13. Brugerolle G. 1977; Ultrastructure du genre Retortamonas Grassi 1879 (Zoomastigophorea, Retortamonadida Wenrich 1931. Protistologica 13:233–240 in French
    [Google Scholar]
  14. Brugerolle G. 1991a; Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma 164:70–90 [CrossRef]
    [Google Scholar]
  15. Brugerolle G. 1991b; Cell organization in free-living amitochondriate heterotrophic flagellates. In The Biology of Free-Living Heterotrophic Flagellates pp 133–148Edited by Patterson D. J., Larsen J. Oxford: Clarendon Press;
    [Google Scholar]
  16. Brugerolle G. 1992; Flagellar apparatus duplication and partition, flagellar transformation during division in Entosiphon sulcatum . Biosystems 28:203–209 [CrossRef]
    [Google Scholar]
  17. Brugerolle G., Taylor F. J. R. 1977; Taxonomy, cytology and evolution of the Mastigophora. In Proceedings of the 5th International Congress of Protozoology pp 14–28Edited by Hutner S. H. New York: Society of Protozoologists;
    [Google Scholar]
  18. Brugerolle G., Patterson D. J. 1997; Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organisation. Eur J Protistol 33:121–130 [CrossRef]
    [Google Scholar]
  19. Brugerolle G., Lee J. J. 2000a; Order Oxymonadida. In The Illustrated Guide to the Protozoa, 2nd edn. pp 1186–1195Edited by Lee J. J., Leedale G. F., Bradbury P. Lawrence, KS: Society of Protozoologists;
    [Google Scholar]
  20. Brugerolle G., Lee J. J. 2000b; Phylum Parabasalia. In The Illustrated Guide to the Protozoa, 2nd edn. pp 1196–1249Edited by Lee J. J., Leedale G. F., Bradbury P. Lawrence, KS: Society of Protozoologists;
    [Google Scholar]
  21. Brugerolle G., Müller M. 2000; Amitochondriate flagellates. In Flagellates: Unity, Diversity and Evolution pp 166–189Edited by Green J. C., Leadbeater B. S. C. London: Taylor & Francis;
    [Google Scholar]
  22. Brugerolle G., Regnault J.-P. 2001; Ultrastructure of the enteromonad flagellate Caviomonas mobilis . Parasitol Res 87:662–665 [CrossRef]
    [Google Scholar]
  23. Brugerolle G., Joyon L., Öktem N. 1973a; Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910. I. Étude ultrastructurale du genre Trepomonas (Dujardin). Protistologica 9:339–348 in French
    [Google Scholar]
  24. Brugerolle G., Joyon L., Öktem N. 1973b; Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910. II. Étude ultrastructurale du genre Spironucleus (Lavier 1936). Protistologica 9:495–502 in French
    [Google Scholar]
  25. Brugerolle G., Joyon L., Öktem N. 1974; Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910. IV. Étude ultrastructurale du genre Octomitus (Prowazek 1904). Protistologica 10:457–463 in French
    [Google Scholar]
  26. Brugerolle G., Kunstyr I., Senaud J., Friedhoff K. T. 1980; Fine structure of trophozoites and cysts of the pathogenic diplomonad Spironucleus muris . Z Parasitenkd 62:47–61 [CrossRef]
    [Google Scholar]
  27. Brugerolle G., Bricheux G., Philippe H., Coffe G. 2002; Collodictyon triciliatum and Diphylleia rotans (= Aulacomonas submarina ) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153:59–70 [CrossRef]
    [Google Scholar]
  28. Cavalier-Smith T. 1981; Eukaryote kingdoms: seven or nine?. Biosystems 14:461–481 [CrossRef]
    [Google Scholar]
  29. Cavalier-Smith T. 1983; A 6-kingdom classification and a unified phylogeny. In Endocytobiology II pp 1027–1034Edited by Schwemmler W., Schenk H. E. A. Berlin: Walter de Gruyter;
    [Google Scholar]
  30. Cavalier-Smith T. 1987; Eukaryotes with no mitochondria. Nature 326:332–333 [CrossRef]
    [Google Scholar]
  31. Cavalier-Smith T. 1991; Cell diversification in heterotrophic flagellates. In The Biology of Free-Living Heterotrophic Flagellates pp 113–131Edited by Patterson D. J., Larsen J. Oxford: Clarendon Press;
    [Google Scholar]
  32. Cavalier-Smith T. 1992a; Percolozoa and the symbiotic origin of the metakaryote cell. In Endocytobiology V pp 399–406Edited by Sato S., Ishida M., Ishikawa H. Tübingen, Germany: Tübingen University Press;
    [Google Scholar]
  33. Cavalier-Smith T. 1992b; Origin of the cytoskeleton. In The Origin and Evolution of the Cell pp 79–106Edited by Hartman H., Matsumo K. Singapore: World Scientific;
    [Google Scholar]
  34. Cavalier-Smith T. 1993; Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994
    [Google Scholar]
  35. Cavalier-Smith T. 1997; Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkd 147:237–258 [CrossRef]
    [Google Scholar]
  36. Cavalier-Smith T. 1998; A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266 [CrossRef]
    [Google Scholar]
  37. Cavalier-Smith T. 1999; Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366 [CrossRef]
    [Google Scholar]
  38. Cavalier-Smith T. 2000; Flagellate megaevolution: the basis for eukaryote diversification. In The Flagellates: Unity, Diversity and Evolution pp 361–390Edited by Green J. C., Leadbeater B. S. C. London: Taylor & Francis;
    [Google Scholar]
  39. Cavalier-Smith T. 2002; The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354
    [Google Scholar]
  40. Corliss J. O. 1994; An interim utilitarian (“user-friendly”) hierarchical classification and characterization of the Protists. Acta Protozool 33:1–51
    [Google Scholar]
  41. Dacks J., Roger A. J. 1999; The first sexual lineage and the relevance of facultative sex. J Mol Evol 48:779–783 [CrossRef]
    [Google Scholar]
  42. Dacks J. B., Silberman J. D., Simpson A. G. B., Moriya S., Kudo T., Ohkuma M., Redfield R. 2001; Oxymonads are closely related to the excavate taxon Trimastix . Mol Biol Evol 18:1034–1044 [CrossRef]
    [Google Scholar]
  43. de Queiroz K., Gauthier J. 1992; Phylogenetic taxonomy. Annu Rev Ecol Syst 23:449–480 [CrossRef]
    [Google Scholar]
  44. Desser S. S., Hong H., Siddall M. E., Barta J. R. 1993; An ultrastructural study of Brugerolleia algonquinensis gen. nov., sp. nov. (Diplomonadida; Diplomonadina), a flagellate parasite from the blood of frogs from Ontario, Canada. Eur J Protistol 2972–80 [CrossRef]
    [Google Scholar]
  45. Edgcomb V. P., Roger A. J., Simpson A. G. B., Kysela D. T., Sogin M. L. 2001; Evolutionary relationships among “jakobid” flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol Biol Evol 18:514–522 [CrossRef]
    [Google Scholar]
  46. Embley T. M., Hirt R. P. 1998; Early branching eukaryotes?. Curr Opin Genet Dev 8:624–629 [CrossRef]
    [Google Scholar]
  47. Eriksson T. 1999 autodecay 4.0. Bergius Foundation, Royal Swedish Academy of Sciences Stockholm, Sweden:
    [Google Scholar]
  48. Eyden B. P., Vickerman K. 1975; Ultrastructure and vacuolar movements in the free-living diplomonad Trepomonas agilis Klebs. J Protozool 22:54–66 [CrossRef]
    [Google Scholar]
  49. Farmer M. A., Triemer R. E. 1988; Flagellar systems in the euglenoid flagellates. Biosystems 21:283–291 [CrossRef]
    [Google Scholar]
  50. Fenchel T., Patterson D. J. 1986; Percolomonas cosmopolitus (Ruinen) n. gen., a new type of filter feeding flagellate from marine plankton. J Mar Biol Assoc U K 66:465–482 [CrossRef]
    [Google Scholar]
  51. Fenchel T., Finlay B. J. 1995 Ecology and Evolution in Anoxic Worlds Oxford: Oxford University Press;
    [Google Scholar]
  52. Flavin M., Nerad T. A. 1993; Reclinomonas americana n. g., n. sp. a new freshwater heterotrophic flagellate. J Eukaryot Microbiol 40:172–179 [CrossRef]
    [Google Scholar]
  53. Friend D. S. 1966; The fine structure of Giardia muris . J Cell Biol 29:317–332 [CrossRef]
    [Google Scholar]
  54. Grassé P.-P. 1952; Classe des Zooflagellés: Zooflagellata ou Zoomastigina. In Traité de Zoologie vol. 1, fasc. 1 pp 963–982Edited by Grassé P.-P. Paris: Masson; in French
    [Google Scholar]
  55. Hinkle G., Sogin M. L. 1993; The evolution of the Vahlkampfiidae as deduced from 16S-like ribosomal RNA analysis. J Eukaryot Microbiol 40:599–603 [CrossRef]
    [Google Scholar]
  56. Hirt R. P., Logsdon J. M. Jr, Healy B., Dorey M. W., Doolittle W. F., Embley T. M. 1999; Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A 96:580–585 [CrossRef]
    [Google Scholar]
  57. Holberton D. V. 1973; Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris . J Cell Sci 13:11–41
    [Google Scholar]
  58. Horner D. S., Embley T. M. 2001; Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18:1970–1975 [CrossRef]
    [Google Scholar]
  59. Keeling P. J., Doolittle W. F. 1997; Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14:895–901 [CrossRef]
    [Google Scholar]
  60. Keeling P. J., Leander B. S. 2003; Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix . J Mol Biol 326:1337–1349 [CrossRef]
    [Google Scholar]
  61. Kulda J., Nohynková E. 1978; Flagellates of the human intestine and of intestines of other species. In Parasitic Protozoa vol 2 pp 1–138Edited by Kreier J. P. New York: Academic Press;
    [Google Scholar]
  62. Leander B. S., Keeling P. J. 2003; Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402 [CrossRef]
    [Google Scholar]
  63. Leander B. S., Triemer R. E., Farmer M. A. 2001; Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356 [CrossRef]
    [Google Scholar]
  64. Lipscomb D. L. 1989; Relationships among the eukaryotes. In The Hierarchy of Life pp 161–178Edited by Fernholm B., Bremer K., Jörnvall H. Amsterdam: Elsevier;
    [Google Scholar]
  65. Mignot J. P., Brugerolle G. 1975; Etude ultrastructurale du flagelle phagotrophe Colponema loxodes Stein. Protistologica 11:429–444 in French
    [Google Scholar]
  66. Moestrup Ø. 2000; The flagellate cytoskeleton: introduction of a general terminology for microtubular flagellar roots in protists. In The Flagellates: Unity, Diversity and Evolution Edited by Green J. C., Leadbeater B. S. C. London: Taylor & Francis;
    [Google Scholar]
  67. Moriya S., Dacks J. B., Takagi A., Noda S., Ohkuma M., Doolittle W. F., Kudo T. 2003; Molecular phylogeny of three oxymonad genera: Pyrsonympha , Dinenympha and Oxymonas . J Eukaryot Microbiol 50:190–197 [CrossRef]
    [Google Scholar]
  68. Morrison H. G., Roger A. J., Nystul T. G., Gillin F. D., Sogin M. L. 2001; Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18:530–541 [CrossRef]
    [Google Scholar]
  69. Mylnikov A. P. 1989; The fine structure and systematic position of Histiona aroides (Bicoecales. Bot Zh 74:184–189 in Russian
    [Google Scholar]
  70. Mylnikov A. P. 1991; Diversity of flagellates without mitochondria. In The Biology of Free-Living Heterotrophic Flagellates pp 149–158Edited by Patterson D. J., Larsen J. Oxford: Clarendon Press;
    [Google Scholar]
  71. Nielsen M. H., Ludvik J., Nielsen R. 1966; On the ultrastructure of Trichomonas vaginalis Donné. J Microsc (Paris) 5:229–250
    [Google Scholar]
  72. O'Kelly C. J. 1993; The jakobid flagellates: structural features of Jakoba , Reclinomonas and Histiona and implications for the early diversification of eukaryotes. J Eukaryot Microbiol 40:627–636 [CrossRef]
    [Google Scholar]
  73. O'Kelly C. J. 1997; Ultrastructure of trophozoites, zoospores and cysts of Reclinomonas americana Flavin & Nerad, 1993 (Protista incertae sedis : Histionidae). Eur J Protistol 33:337–348 [CrossRef]
    [Google Scholar]
  74. O'Kelly C. J., Nerad T. A. 1999; Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae fam. nov.): a Jakoba -like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J Eukaryot Microbiol 46:522–531 [CrossRef]
    [Google Scholar]
  75. O'Kelly C. J., Farmer M. A., Nerad T. A. 1999; Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al. : similarities of Trimastix species with retortamonad and jakobid flagellates. Protist 150:149–162 [CrossRef]
    [Google Scholar]
  76. Page F. C., Blanton R. L. 1985; The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida. Protistologica 21:121–132
    [Google Scholar]
  77. Patterson D. J. 1988; The evolution of protozoa. Mem Inst Oswaldo Cruz 83:Suppl. 1580–600 [CrossRef]
    [Google Scholar]
  78. Patterson D. J. 1990; Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sediments. J Mar Biol Assoc U K 70:381–393 [CrossRef]
    [Google Scholar]
  79. Patterson D. J. 1994; Protozoa: evolution and systematics. In Progress in Protozoology pp 1–14Edited by Hausmann K., Hülsmann N. Berlin: Gustav Fischer Verlag;
    [Google Scholar]
  80. Patterson D. J. 1999; The diversity of eukaryotes. Am Nat 154:SupplS96–S124 [CrossRef]
    [Google Scholar]
  81. Patterson D. J., Zölffel M. 1991; Heterotrophic flagellates of uncertain taxonomic position. In The Biology of Free-Living Heterotrophic Flagellates pp 427–475Edited by Patterson D. J., Larsen J. Oxford: Clarendon Press;
    [Google Scholar]
  82. Patterson D. J., Rogerson A., Vørs N. 2000a; Class Heterolobosea. In The Illustrated Guide to the Protozoa, 2nd edn. pp 1104–1111Edited by Lee J. J., Leedale G. F., Bradbury P. Lawrence, KS: Society of Protozoologists;
    [Google Scholar]
  83. Patterson D. J., Vørs N., Simpson A. G. B., O'Kelly C. J. 2000b; Residual free-living and predatory heterotrophic flagellates. In The Illustrated Guide to the Protozoa , 2nd edn. pp 1302–1328Edited by Lee J. J., Leedale G. F., Bradbury P. Lawrence, KS: Society of Protozoologists;
    [Google Scholar]
  84. Philippe H., Adoutte A. 1998; The molecular phylogeny of Eukaryota: solid facts and uncertainties. In Evolutionary Relationships Among Protozoa pp 25–56Edited by Coombs G. H., Vickerman K., Sleigh M. A., Warren A. London: Chapman & Hall;
    [Google Scholar]
  85. Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent J., Moreira D., Müller M., Le Guyader H. 2000; Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc R Soc Lond B Biol Sci 267:1213–1221 [CrossRef]
    [Google Scholar]
  86. Radek R. 1994; Monocercomonoides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus . Arch Protistenkd 144:373–382 [CrossRef]
    [Google Scholar]
  87. Roger A. J. 1999; Reconstructing early events in eukaryotic evolution. Am Nat 154:SupplS146–S163 [CrossRef]
    [Google Scholar]
  88. Roger A. J., Svärd S. G., Tovar J., Clark C. G., Smith M. W., Gillin F. D., Sogin M. L. 1998; A mitochondrial-like chaperonin 60 gene in Giardia lamblia : evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234 [CrossRef]
    [Google Scholar]
  89. Ruinen J. 1938; Notizen uber Salzflagellaten. II. Uber die Verbreitung der Salzflagellaten. Arch Protistenkd 90:210–258 in German
    [Google Scholar]
  90. Siddall M. E., Hong H., Desser S. S. 1992; Phylogenetic analysis of the Diplomonadida (Wenyon, 1926). Brugerolle, 1975: evidence for heterochrony in protozoa and against Giardia lamblia as a “missing link”. J Protozool 39:361–367 [CrossRef]
    [Google Scholar]
  91. Silberman J. D., Simpson A. G. B., Kulda J., Cepicka I., Hampl V., Johnson P. J., Roger A. J. 2002; Retortamonad flagellates are closely related to diplomonads – implications for the history of mitochondrial function in eukaryote evolution. Mol Biol Evol 19:777–786 [CrossRef]
    [Google Scholar]
  92. Simpson A. G. B. 1997; The identity and composition of the Euglenozoa. Arch Protistenkd 148:318–328 [CrossRef]
    [Google Scholar]
  93. Simpson A. G. B., Patterson D. J. 1999; The ultrastructure of Carpediemonas membranifera (Eukaryota), with reference to the excavate hypothesis. Eur J Protistol 35:353–370 [CrossRef]
    [Google Scholar]
  94. Simpson A. G. B., Patterson D. J. 2001; On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata . J Eukaryot Microbiol 48:480–492 [CrossRef]
    [Google Scholar]
  95. Simpson A. G. B., van den Hoff J., Bernard C., Burton H. R., Patterson D. J. 1997; The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis , Fenchel et al . Arch Protistenkd 147:213–225 [CrossRef]
    [Google Scholar]
  96. Simpson A. G. B., Bernard C., Patterson D. J. 2000; The ultrastructure of Trimastix marina Kent, 1880 (Eukaryota), an excavate flagellate. Eur J Protistol 36:229–252 [CrossRef]
    [Google Scholar]
  97. Simpson A. G. B., MacQuarrie E. K., Roger A. J. 2002a; Early origin of canonical introns. Nature 419:270 [CrossRef]
    [Google Scholar]
  98. Simpson A. G. B., Radek R., Dacks J. B., O'Kelly C. J. 2002b; How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 49:239–248 [CrossRef]
    [Google Scholar]
  99. Simpson A. G. B., Roger A. J., Silberman J. D., Leipe D. D., Edgcomb V. P., Jermiin L. S., Patterson D. J., Sogin M. L. 2002c; Evolutionary history of ‘early diverging’ eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia . Mol Biol Evol 19:1782–1791 [CrossRef]
    [Google Scholar]
  100. Sleigh M. A. 1988; Flagellar root maps allow speculative comparisons of root patterns and of their ontogeny. Biosystems 21:277–282 [CrossRef]
    [Google Scholar]
  101. Sleigh M. A. 1989 Protozoa and other Protists London: Edward Arnold;
    [Google Scholar]
  102. Sogin M. L. 1989; Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29:487–499
    [Google Scholar]
  103. Sterud E., Mo T. A., Poppe T. T. 1997; Ultrastructure of Spironucleus barkhanus n. sp. (Diplomonadida Hexamitidae from grayling Thymallus thymallus (L.) (Salmonidae) and Atlantic salmon Salmo salar L. (Salmonidae). J Eukaryot Microbiol 44:399–407 [CrossRef]
    [Google Scholar]
  104. Stiller J. W., Hall B. D. 1999; Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol Biol Evol 16:1270–1279 [CrossRef]
    [Google Scholar]
  105. Swofford D. L. 2000 paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  106. Tachezy J., Sánchez L. B., Müller M. 2001; Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis , as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928 [CrossRef]
    [Google Scholar]
  107. Tovar J., Leon-Avila G., Sánchez L. B., Sutak R., Tachezy J., van der Geizen M., Hernández M., Müller M., Lucocq J. M. 2003; Mitochondrial remnant organelles of Giardia function in iron-sulphur cluster metabolism. Nature in press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02578-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02578-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error