1887

Abstract

Four bacterial strains, SL014B-41A4, SL014B-20A1, SL014B-76A1 and SL014B-79A, isolated from a crude oil-contaminated saline soil of Shengli Oilfield, China, were investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SL014B-41A4 belonged to the genus in the order , with the highest sequence similarity with YIM YD3 (98.3 %). The DNA–DNA relatedness of strain SL014B-41A4 to YIM YD3 was 27.03±3.0 %. Strain SL014B-41A4 was Gram-negative staining, facultatively anaerobic and produced deep red pigment in artificial seawater medium. Cells of strain SL014B-41A4 were rod-shaped (0.6–4.0×1.25–25 µm), motile with a single polar flagellum and often formed branches. The strain contained Q-10 as the predominant respiratory ubiquinone and Cω7 (57.5 %), C (16.4 %) and 10-methyl C (9.1 %) as the major fatty acids. Strains SL014B-20A1, SL014B-76A1 and SL014B-79A were actinobacteria and belonged to the genus in the family of the order with the highest 16S rRNA gene sequence similarities with SST-39 (96.4 %), KISS-17Se (96.2 %) and Ben 106 (94.7 %). Strains SL014B-20A1, SL014B-76A1 and SL014B-79A were Gram-positive staining, facultatively anaerobic, non-endospore-forming, non-motile, acid-fast and oval to rod-shaped (0.48×0.5–1.0 µm). These three novel strains had -diaminopimelic acid (DAP) as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9(H) as the only menaquinone and anteiso-C (67.11–76.14 %) as the major cellular fatty acid. The G+C contents of the genomic DNA of strain SL014B-41A4 and strains SL014B-20A1, SL014B-76A1 and SL014B-79A were 67.68 mol% and 65.65–67.17 mol%, respectively. Based on phenotypic and genotypic characteristics, strain SL014B-41A4 represents a novel species of the genus , for which the name is proposed, with strain SL014B-41A4 ( = DSM 22962 = CGMCC 1.9161) as the type strain. Strains SL014B-20A1, SL014B-76A1 and SL014B-79A represent a novel species of the genus , for which the name is proposed, with strain SL014B-20A1 ( = DSM 22955 = CGMCC 1.9159) as the type strain.

Funding
This study was supported by the:
  • National Basic Research Program of China (Award 2005CB221308)
  • National Natural Science Foundation of China (Award 30870086)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025932-0
2011-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1767.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025932-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [View Article][PubMed]
    [Google Scholar]
  2. Bae H. S., Moe W. M., Yan J., Tiago I., da Costa M. S., Rainey F. A. 2006; Brooklawnia cerclae gen. nov., sp. nov., a propionate-forming bacterium isolated from chlorosolvent-contaminated groundwater. Int J Syst Evol Microbiol 56:1977–1983 [View Article][PubMed]
    [Google Scholar]
  3. Barritt M. M. 1936; The intensification of the Voges-Proskauer reaction by the addition of a-naphthol. J Pathol Bacteriol 42:441–454 [View Article]
    [Google Scholar]
  4. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense . Int J Syst Evol Microbiol 57:1095–1107 [View Article][PubMed]
    [Google Scholar]
  5. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford T. P., Simpson P. J., Fox P. F., Cogan T. M. 2001; Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:843–852[PubMed] [CrossRef]
    [Google Scholar]
  6. Collins M. D., Goodfellow M., Minnikin D. E. 1980; Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118:29–37[PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  8. Dong X.-Z., Cai M.-Y. (editors) 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp. 370–398 Beijing: Science Press; (in Chinese)
    [Google Scholar]
  9. Eguchi M., Nishikawa T., Macdonald K., Cavicchioli R., Gottschal J. C., Kjelleberg S. 1996; Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294[PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Felsenstein J. 2002; phylip (phylogeny inference package) version 3.68. Distributed by the author. Department of Genome Sciences, University of Washington: Seattle, USA;
  12. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  13. Gu J., Cai H., Yu S. L., Qu R., Yin B., Guo Y. F., Zhao J. Y., Wu X. L. 2007; Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57:250–254 [View Article][PubMed]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Lodders N., Warfolomeow I., Busse H. J. 2009; Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 59:1545–1549 [View Article][PubMed]
    [Google Scholar]
  16. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  19. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [View Article][PubMed]
    [Google Scholar]
  20. Lechevalier M. P., Lechevalier H. A. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy pp. 227–291 Edited by Dietz X., Thayer Y. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  21. Lee D. W., Lee S. D. 2008; Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 58:785–789 [View Article][PubMed]
    [Google Scholar]
  22. Liu J. H., Wang Y. X., Zhang X. X., Wang Z. G., Chen Y. G., Wen M. L., Xu L. H., Peng Q., Cui X. L. 2010; Salinarimonas rosea gen. nov., sp. nov., a new member of the α-2 subgroup of the Proteobacteria . Int J Syst Evol Microbiol 60:55–60 [View Article][PubMed]
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  24. Maszenan A. M., Seviour R. J., Patel B. K., Schumann P., Rees G. N. 1999; Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468 [View Article][PubMed]
    [Google Scholar]
  25. Muurholm S., Cousin S., Päuker O., Brambilla E., Stackebrandt E. 2007; Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol Microbiol 57:2221–2227 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  31. Van Hamme J. D., Singh A., Ward O. P. 2003; Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549 [View Article][PubMed]
    [Google Scholar]
  32. Wang Y. N., Cai H., Yu S. L., Wang Z. Y., Liu J., Wu X. L. 2007; Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915 [View Article][PubMed]
    [Google Scholar]
  33. Wang Y. N., Chi C. Q., Cai M., Lou Z. Y., Tang Y. Q., Zhi X. Y., Li W. J., Wu X. L., Du X. 2010; Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 60:638–643 [View Article][PubMed]
    [Google Scholar]
  34. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813[PubMed]
    [Google Scholar]
  35. Wu G., Wu X. Q., Wang Y. N., Chi C. Q., Tang Y. Q., Kida K., Wu X. L., Luan Z. K. 2008; Halomonas daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield soil. Int J Syst Evol Microbiol 58:2859–2865 [View Article][PubMed]
    [Google Scholar]
  36. Wu X. L., Yu S. L., Gu J., Zhao G. F., Chi C. Q. 2009; Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. Int J Syst Evol Microbiol 59:300–305 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025932-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025932-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error