1887

Abstract

In order to clarify the taxonomic position of , which shares 99·9 % 16S rDNA sequence identity (1433 of 1435 bp) with , we compared the two species in a polyphasic taxonomic approach. Results of 122 physiological and biochemical tests for DSM 13638 and 6a3 were identical, except for the lack of growth of 6a3 with perchlorate as the terminal electron acceptor. Presence of a gene and nitrogenase activity, a key feature of , were also detected in by Southern hybridization and by the acetylene reduction assay, respectively. Whole-cell SDS-PAGE profiles of SDS-soluble proteins of strains DSM 13638 and 6a3 were almost identical. DNA–DNA hybridization studies showed more than 90 % binding between and two strains of . These data provide evidence that the two bacteria belong to the same species and that is a later subjective synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02606-0
2003-07-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531139.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02606-0&mimeType=html&fmt=ahah

References

  1. Achenbach L. A., Michaelidou U., Bruce R. A., Fryman J., Coates J. D. 2001; Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov. sp. nov. two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533
    [Google Scholar]
  2. Bruce R. A., Achenbach L. A., Coates J. D. 1999; Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol 1:319–329 [CrossRef]
    [Google Scholar]
  3. Coates J. D., Michaelidou U., Bruce R. A., O'Connor S. M., Crespi J. N., Achenbach L. A. 1999; Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241
    [Google Scholar]
  4. Coates J. D., Chakraborty R., Lack J. G., O'Connor S. M., Cole K. A., Bender K. S., Achenbach L. A. 2001; Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas . Nature 411:1039–1043 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Engelhard M., Hurek T., Reinhold-Hurek B. 2000; Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141 [CrossRef]
    [Google Scholar]
  7. Hurek T., Reinhold-Hurek B. 1995; Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences. Appl Environ Microbiol 61:2257–2261
    [Google Scholar]
  8. Hurek T., Burggraf S., Woese C. R., Reinhold-Hurek B. 1993; 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs. Appl Environ Microbiol 59:3816–3824
    [Google Scholar]
  9. Hurek T., Wagner B., Reinhold-Hurek B. 1997a; Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339
    [Google Scholar]
  10. Hurek T., Egener T., Reinhold-Hurek B. 1997b; Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the β -subclass. J Bacteriol 179:4172–4178
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. New York: Academic Press;
    [Google Scholar]
  12. Karg T., Reinhold-Hurek B. 1996; Global changes in protein composition of N2-fixing Azoarcus sp. strain BH72 upon diazosome formation. J Bacteriol 178:5748–5754
    [Google Scholar]
  13. Kersters K. 1985; Numerical methods in the classification of bacteria by protein electrophoresis. In Computer-assisted Bacterial Systematics pp 337–368Edited by Goodfellow M., Jones D., Priest F. G. London: Academic Press;
    [Google Scholar]
  14. Maidak B. L., Cole J. R., Parker C. T. Jr11 other authors 1999; A new version of the RDP (Ribosomal Database Project. Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:171–173
    [Google Scholar]
  16. Michaelidou U., Achenbach L. A., Coates J. D. 2000; Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons. In Perchlorate in the Environment pp 271–284Edited by Urbansky E. T. New York: Kluwer/Plenum;
    [Google Scholar]
  17. Reinhold B., Hurek T., Niemann E.-G., Fendrik I. 1986; Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl Environ Microbiol 52:520–526
    [Google Scholar]
  18. Reinhold-Hurek B., Hurek T. 2000; Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov. sp. nov. Int J Syst Evol Microbiol 50:649–659 [CrossRef]
    [Google Scholar]
  19. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J. 1993; Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass ( Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Van de Peer Y., de Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02606-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02606-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error