1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain 1445t, was isolated from a hot spring on Kunashir Island (Kuril Islands, Russia). Cells were motile rods (0.4–0.5×1.0–3.0 µm). The temperature range for growth at pH 7.8 was 46–80 °C, with optimum growth at 65 °C. The pH range for growth at 65 °C was pH 5.7–9.0, with optimum growth at pH 7.8. Growth was not observed at or below 40 °C, at or above 84 °C, at or below pH 5.4 or at or above pH 9.5. The isolate degraded a wide range of substrates including starch, cellulose and cellulose derivatives. Elemental sulfur stimulated growth, but sodium sulfate, sulfite and thiosulfate did not. DNA G+C content was 31 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 1445t belonged to the genus . 16S rRNA gene sequence similarities with strains of other species of the genus were 94.9–98.3 %; the type strain of was the closest relative of strain 1445t. DNA–DNA hybridization of strain 1445t and AB39 revealed a relatedness value of 20 %. Based on phylogenetic data and physiological properties of the isolate, a novel species, designated sp. nov., is proposed with strain 1445t ( = DSM 21630  = VKM B-2549) as the type strain.

Funding
This study was supported by the:
  • RFBR (Award 06-04-49045)
  • Federal Agency of Education (Award П2283)
  • Federal Agency of Science and Innovations (Award П646)
  • Russian Academy of Sciences (Award 02.512.11.2209)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026070-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2697.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026070-0&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [View Article][PubMed]
    [Google Scholar]
  2. Bergquist P. L., Gibbs M. D., Morris D. D., Te’o V. S. J., Saul D. J., Morgan H. W. 1999; Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110 [View Article]
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [View Article]
    [Google Scholar]
  4. Cai J., Wang Y., Liu D., Zeng Y., Xue Y., Ma Y., Feng Y. 2007; Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. Int J Syst Evol Microbiol 57:2333–2336 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Friedrich A. B., Antranikian G. 1996; Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales . Appl Environ Microbiol 62:2875–2882
    [Google Scholar]
  9. Huber R., Hannig M. 2006; Thermotogales . Prokaryotes 7:899–922 [View Article]
    [Google Scholar]
  10. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111 [View Article]
    [Google Scholar]
  11. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of the halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Mikrobiologiia) 61:563–567
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  13. Miroshnichenko M. L., Kublanov I. V., Kostrikina N. A., Tourova T. P., Kolganova T. V., Birkeland N. K., Bonch-Osmolovskaya E. A. 2008; Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58:1492–1496 [View Article][PubMed]
    [Google Scholar]
  14. Park D. 2007; Genomic DNA isolation from different biological materials. In Methods in Molecular Biology, vol. 353, Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd edn. pp. 3–13 Edited by Hilario E., Mackay J. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  15. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69 [View Article]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  20. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [View Article][PubMed]
    [Google Scholar]
  21. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579 [View Article][PubMed]
    [Google Scholar]
  22. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026070-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026070-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error