1887

Abstract

A Gram-negative, aerobic, motile rod, designated BZ93, was isolated from soil from an industrial site. The strain grew at 5–30 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BZ93 was related to members of the genus and was related most closely to C10-2 (97.8 % 16S rRNA gene sequence similarity) and IFO 14163 (97.4 %). The predominant cellular fatty acids of strain BZ93 were Cω7 (54.8 %), summed feature 3 (Cω7 and/or iso-C 2-OH; 10.3 %), C (9.9 %) and C cyclo (7.4 %). The major quinone was ubiquinone 9. The major phospholipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. The genomic DNA G+C content was 61.8 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, a novel species, sp. nov., is proposed. The type strain is BZ93 ( = DSM 22558  = CGMCC 1.9095 = LMG 26048).

Funding
This study was supported by the:
  • Autonome Provinz Bozen, Südtirol
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026104-0
2011-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2333.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026104-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  2. Bozal N., Montes M. J., Mercadé E. 2007; Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 2009; phylip (phylogeny inference package) version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  7. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44:410–415 [View Article][PubMed]
    [Google Scholar]
  8. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  9. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [View Article][PubMed]
    [Google Scholar]
  12. Margesin R., Schinner F., Marx J. C., Gerday C. (editors) 2008 Psychrophiles – from Biodiversity to Biotechnology Heidelberg: Springer; [View Article]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  14. Migula W. 1894; Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238 (in German)
    [Google Scholar]
  15. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [View Article]
    [Google Scholar]
  16. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894, 237AL (nom. cons. Opin. 5, Jud. Comm. 1952, 237). In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Palleroni N. J. 1992; Introduction to the family Pseudomonadaceae . In The Prokaryotes, 2nd edn. pp. 3071–3085 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  18. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7[PubMed]
    [Google Scholar]
  19. Reddy G. S. N., Matsumoto G. I., Schumann P., Stackebrandt E., Shivaji S. 2004; Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov.. Int J Syst Evol Microbiol 54:713–719 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sambrook J., Frisch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  23. Sneath P. H. A., Stevens M., Sackin M. J. 1981; Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47:423–448 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Timmis K. N. 2002; Pseudomonas putida: a cosmopolitan opportunist par excellence . Environ Microbiol 4:779–781 [View Article][PubMed]
    [Google Scholar]
  27. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  28. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989; Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178
    [Google Scholar]
  29. Yumoto I., Kusano T., Shingyo T., Nodasaka Y., Matsuyama H., Okuyama H. 2001; Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles 5:343–349 [View Article][PubMed]
    [Google Scholar]
  30. Zhang D.-C., Schinner F., Margesin R. 2010; Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2592–2595 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026104-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026104-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error