1887

Abstract

The phylogenetic relationship of 12 ammonia-oxidizing isolates (eight nitrosospiras and four nitrosomonads), for which no gene sequence information was available previously, was investigated based on their genes encoding 16S rRNA and the active site subunit of ammonia monooxygenase (AmoA). Almost full-length 16S rRNA gene sequences were determined for the 12 isolates. In addition, 16S rRNA gene sequences of 15 ammonia-oxidizing bacteria (AOB) published previously were completed to allow for a more reliable phylogeny inference of members of this guild. Moreover, sequences of 453 bp fragments of the gene were determined from 15 AOB, including the 12 isolates, and completed for 10 additional AOB. 16S rRNA gene and -based analyses, including all available sequences of AOB pure cultures, were performed to determine the position of the newly retrieved sequences within the established phylogenetic framework. The resulting 16S rRNA gene and tree topologies were similar but not identical and demonstrated a superior resolution of 16S rRNA versus analysis. While 11 of the 12 isolates could be assigned to different phylogenetic groups recognized within the betaproteobacterial AOB, the estuarine isolate sp. Nm143 formed a separate lineage together with three other marine isolates whose 16S rRNA sequences have not been published but have been deposited in public databases. In addition, 17 environmentally retrieved 16S rRNA gene sequences not assigned previously and all originating exclusively from marine or estuarine sites clearly belong to this lineage.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02638-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531485.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02638-0&mimeType=html&fmt=ahah

References

  1. Aakra Å., Utåker J. B., Nes I. F. 1999a; RFLP of rRNA genes and sequencing of the 16S–23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int J Syst Bacteriol 49:123–130 [CrossRef]
    [Google Scholar]
  2. Aakra Å., Utåker J. B., Nes I. F., Bakken L. R. 1999b; An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39:23–31 [CrossRef]
    [Google Scholar]
  3. Aakra Å., Utåker J. B., Nes I. F. 2001a; Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiol Lett 205:237–242 erratum 209321
    [Google Scholar]
  4. Aakra Å., Utåker J. B., Pommerening-Röser A., Koops H.-P., Nes I. F. 2001b; Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. Int J Syst Evol Microbiol 51:2021–2030 [CrossRef]
    [Google Scholar]
  5. Bano N., Hollibaugh J. T. 2000; Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl Environ Microbiol 66:1960–1969 [CrossRef]
    [Google Scholar]
  6. Baribeau H., Kinner C. A., Stephen J. R., de Leon R., Rochelle P. A., Clark D. L. 2000; Microbial population characterization of suspended and fixed biomass in drinking water. American Water Works Association Water Quality Technology ConferenceSalt Lake City, UT, USA5–9 November 2000
    [Google Scholar]
  7. Bock E., Sand W. 1993; The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514
    [Google Scholar]
  8. Bock E., Wagner M. 2001; Oxidation of inorganic nitrogen compounds as an energy source. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn.Edited by Dworkin M.others New York: Springer Verlag; Online http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  9. Casciotti K. L., Ward B. B. 2001; Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67:2213–2221 [CrossRef]
    [Google Scholar]
  10. de Bie M. J. M., Speksnijder A. G. C. L., Kowalchuk G. A., Schuurmann T., Zwart G., Stephen J. R., Diekmann O. E., Lånbroek H. J. 2001; Shifts in the dominant populations of ammonia-oxidizing β -subclass Proteobacteria along the eutrophic Schelde estuary. Aquat Microb Ecol 23:225–236 [CrossRef]
    [Google Scholar]
  11. Frankland P. F., Frankland G. C. 1890; The nitrifying process and its specific ferment. Philos Trans R Soc Lond B Biol Sci 181:107–128 [CrossRef]
    [Google Scholar]
  12. Freitag T. E., Prosser J. I. 2003; Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl Environ Microbiol 69:1359–1371 [CrossRef]
    [Google Scholar]
  13. Gieseke A., Purkhold U., Wagner M., Amann R., Schramm A. 2001; Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362 [CrossRef]
    [Google Scholar]
  14. Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J., Saunders J. R. 1993; The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153 [CrossRef]
    [Google Scholar]
  15. Hollibaugh J. T., Bano N., Ducklow H. W. 2002; Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira -like ammonia-oxidizing bacteria. Appl Environ Microbiol 68:1478–1484 [CrossRef]
    [Google Scholar]
  16. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef]
    [Google Scholar]
  17. Hommes N. G., Sayavedra-Soto L. A., Arp D. J. 1998; Mutagenesis and expression of amo , which codes for ammonia monooxygenase in Nitrosomonas europaea . J Bacteriol 180:3353–3359
    [Google Scholar]
  18. Horz H. P., Rotthauwe J. H., Lukow T., Liesack W. 2000; Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204 [CrossRef]
    [Google Scholar]
  19. Juretschko S., Timmermann G., Schmid M., Schleifer K. H., Pommerening-Röser A., Koops H.-P., Wagner M. 1998; Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira -like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051
    [Google Scholar]
  20. Klotz M. G., Norton J. M. 1995; Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene 163:159–160 [CrossRef]
    [Google Scholar]
  21. Koops H.-P., Harms H. 1985; Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria. Arch Microbiol 141:214–218 [CrossRef]
    [Google Scholar]
  22. Koops H.-P., Pommerening-Röser A. 2001; Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9 [CrossRef]
    [Google Scholar]
  23. Koops H.-P., Böttcher B., Möller U. C., Pommerening-Röser A., Stehr G. 1991; Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137:1689–1699 [CrossRef]
    [Google Scholar]
  24. Koops H.-P., Purkhold U., Pommerening-Röser A., Timmermann G., Wagner M. 2003; The lithotrophic ammonia oxidizing bacteria. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn.Edited by Dworkin M.others New York: Springer Verlag; Online http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  25. Kowalchuk G. A., Stephen J. R. 2001; Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529 [CrossRef]
    [Google Scholar]
  26. MacDonald R. M. 1986; Nitrification in soil: an introductory history. In Nitrification pp 1–16Edited by Prosser J. I. Oxford: IRL Press;
    [Google Scholar]
  27. McCaig A. E., Embley T. M., Prosser J. I. 1994; Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 120:363–367 [CrossRef]
    [Google Scholar]
  28. McTavish H., Fuchs J. A., Hooper A. B. 1993; Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea . J Bacteriol 175:2436–2444
    [Google Scholar]
  29. Nicolaisen M. H., Ramsing N. B. 2002; Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189–203 [CrossRef]
    [Google Scholar]
  30. Norton J. M., Alzerreca J. J., Suwa Y., Klotz M. G. 2002; Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149 [CrossRef]
    [Google Scholar]
  31. Painter H. A. 1986; Nitrification in the treatment of sewage and waste waters. In Nitrification pp 185–211Edited by Prosser J. I. Oxford: IRL Press;
    [Google Scholar]
  32. Phillips C. J., Smith Z., Embley T. M., Prosser J. I. 1999; Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl Environ Microbiol 65:779–786
    [Google Scholar]
  33. Pommerening-Röser A. 1993; Untersuchungen zur phylogenie ammoniak oxidierender bakterien, p. 50. PhD thesis University of Hamburg;
  34. Pommerening-Röser A., Rath G., Koops H.-P. 1996; Phylogenetic diversity within the genus Nitrosomonas . Syst Appl Microbiol 19:344–351 [CrossRef]
    [Google Scholar]
  35. Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M. C., Koops H.-P., Wagner M. 2000; Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382 [CrossRef]
    [Google Scholar]
  36. Rotthauwe J. H., de Boer W., Liesack W. 1995; Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71. FEMS Microbiol Lett 133:131–135 [CrossRef]
    [Google Scholar]
  37. Rotthauwe J. H., Witzel K. P., Liesack W. 1997; The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712
    [Google Scholar]
  38. Sorokin D. Y., Muyzer G., Brinkhoff T., Kuenen J. G., Jetten M. S. M. 1998; Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch Microbiol 170:345–352 [CrossRef]
    [Google Scholar]
  39. Sorokin D., Tourova T., Schmid M. C., Wagner M., Koops H.-P., Kuenen J. G., Jetten M. 2001; Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 176:170–177 [CrossRef]
    [Google Scholar]
  40. Stehr G., Böttcher B., Dittberner P., Rath G., Koops H.-P. 1995a; The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol Ecol 17:177–186 [CrossRef]
    [Google Scholar]
  41. Stehr G., Zörner S., Böttcher B., Koops H.-P. 1995b; Exopolymers: an ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microb Ecol 30:115–126
    [Google Scholar]
  42. Stephen J. R., McCaig A. E., Smith Z., Prosser J. I., Embley T. M. 1996; Molecular diversity of soil and marine 16S rRNA gene sequences related to β -subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154
    [Google Scholar]
  43. Stephen J. R., Chang Y. J., Macnaughton S. J., Kowalchuk G. A., Leung K. T., Flemming C. A., White D. C. 1999; Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol 65:95–101
    [Google Scholar]
  44. Suwa Y., Imamura Y., Suzuki T., Tashiro T., Urushigawa Y. 1994; Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludge. Wat Res 28:1523–1532 [CrossRef]
    [Google Scholar]
  45. Suwa Y., Sumino T., Noto K. 1997; Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol 43:373–379 [CrossRef]
    [Google Scholar]
  46. Teske A., Alm E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A. 1994; Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176:6623–6630
    [Google Scholar]
  47. Tokuyama T., Yoshida N., Matasuishi T., Takahashi N., Takahashi T., Kanehira T., Shinohara M. 1997; A new psychrotrophic ammonia-oxidizing bacterium Nitrosovibrio sp. TYM9. J Ferment Bioeng 83:377–380 [CrossRef]
    [Google Scholar]
  48. Utåker J. B., Nes I. F. 1998; A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Syst Appl Microbiol 21:72–88 [CrossRef]
    [Google Scholar]
  49. Utåker J. B., Bakken L., Jiang Q. Q., Nes I. F. 1995; Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences. Syst Appl Microbiol 18:549–559 [CrossRef]
    [Google Scholar]
  50. Ward B. B. 1982; Oceanic distribution of ammonium-oxidizing bacteria determined by immunofluorescent assay. J Mar Res 40:1155–1172
    [Google Scholar]
  51. Ward B. B., Carlucci A. F. 1985; Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in sewage plants by flow cytometry. Appl Environ Microbiol 50:194–201
    [Google Scholar]
  52. Winogradsky S. 1890; Recherches sur les organismes de la nitrification. Ann Inst Pasteur 4:213–231 in French
    [Google Scholar]
  53. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H.-P., Harms H., Stackebrandt E. 1984; The phylogeny of the purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336 [CrossRef]
    [Google Scholar]
  54. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of the purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33 [CrossRef]
    [Google Scholar]
  55. Yamagata A., Kato J., Hirota R., Kuroda A., Ikeda T., Takiguchi N., Ohtake H. 1999; Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11. J Bacteriol 181:3375–3381
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02638-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02638-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error