1887

Abstract

In a previous study that was based primarily on 16S rDNA sequencing, two groups of bifidobacteria that had been recovered from a pig caecum were proposed to belong to two novel species, termed ‘’ and ‘’. In this study, based on DNA G+C content and partial heat-shock protein 60 (HSP60) gene sequences, the assignment of ‘’, corrected to , to the genus was confirmed. The DNA G+C content of ‘’ was relatively low, which was consistent with its segregation into subcluster II of the 16S rDNA phylogenetic tree. Based on partial 16S rDNA and HSP60 gene sequences, the species was transferred to a novel genus and reclassified as gen. nov., sp. nov. Biochemical profiles and growth parameters were established for both novel species. Interestingly, each had a high tolerance to oxygen and grew on agar media under aerobic conditions, a trait that may relate to their caecal habitat. Under aerobic growth conditions, the short-rod morphology of lengthened considerably. This appeared to arise from incomplete cell division. In addition, was unusual in that it grew at temperatures as low as 4 °C. On the basis of genetic, phylogenetic and phenotypic data, the identities of sp. nov. (type strain, T16=LMG 21775=NCIMB 13940) and gen. nov., sp. nov. (type strain, T6=LMG 21773=NCIMB 13939) are confirmed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02667-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540401.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02667-0&mimeType=html&fmt=ahah

References

  1. Ahn J. B., Hwang H.-J., Park J.-H. 2001; Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen. J Microbiol Biotechnol 11:443–451
    [Google Scholar]
  2. Biavati B., Vescovo M., Torriani S., Bottazzi V. 2000; Bifidobacteria: history, ecology, physiology and applications. Ann Microbiol 50:117–131
    [Google Scholar]
  3. Crociani F., Biavati B., Alessandrini A., Chiarini C., Scardovi V. 1996; Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries. Int J Syst Bacteriol 46:564–571 [CrossRef]
    [Google Scholar]
  4. Gavini F., Pourcher A.-M., Neut C., Monget D., Romond C., Oger C., Izard D. 1991; Phenotypic differentiation of bifidobacteria of human and animal origins. Int J Syst Bacteriol 41:548–557 [CrossRef]
    [Google Scholar]
  5. Gómez Zavaglia A., Kociubinski G., Pérez P., De Antoni G. 1998; Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot 61:865–873
    [Google Scholar]
  6. Harmsen H. J. M., Raangs G. C., He T., Degener J. E., Welling G. W. 2002; Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990 [CrossRef]
    [Google Scholar]
  7. Hillman K., Whyte A. L., Stewart C. S. 1993; Dissolved oxygen in the porcine gastrointestinal tract. Lett Appl Microbiol 16:299–302 [CrossRef]
    [Google Scholar]
  8. Hoyles L., Inganäs E., Falsen E., Drancourt M., Weiss N., McCartney A. L., Collins M. D. 2002; Bifidobacterium scardovii sp. nov., from human sources. Int J Syst Evol Microbiol 52:995–999 [CrossRef]
    [Google Scholar]
  9. Jian W., Dong X. 2002; Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen nov., comb. nov., and Parascardovia denticolens gen. nov., comb nov., respectively. Int J Syst Evol Microbiol 52:809–812 [CrossRef]
    [Google Scholar]
  10. Jian W., Zhu L., Dong X. 2001; New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 51:1633–1638 [CrossRef]
    [Google Scholar]
  11. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H. F., Welling G. W. 1995; Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075
    [Google Scholar]
  12. Marteau P., Pochart P., Doré J., Béra-Maillet C., Bernalier A., Corthier G. 2001; Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942 [CrossRef]
    [Google Scholar]
  13. Meile L., Ludwig W., Rueger U., Gut C., Kaufmann P., Dasen G., Wenger S., Teuber M. 1997; Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Miyake T., Watanabe K., Watanabe T., Oyaizu H. 1998; Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42:661–667 [CrossRef]
    [Google Scholar]
  16. Petr J., Rada V. 2001; Bifidobacteria are obligate inhabitants of the crop of adult laying hens. J Vet Med Ser B 48:227–234 [CrossRef]
    [Google Scholar]
  17. Sakata S., Kitahara M., Sakamoto M., Hayashi H., Fukuyama M., Benno Y. 2002; Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum . Int J Syst Evol Microbiol 52:1945–1951 [CrossRef]
    [Google Scholar]
  18. Scardovi V. 1986; Genus Bifidobacterium .. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1418–1434 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “ minimum ” and “ subtile ” groups of new bifidobacteria found in sewage. Int J Syst Bacteriol 24:21–28 [CrossRef]
    [Google Scholar]
  20. Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Doré J. 2000; Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266 [CrossRef]
    [Google Scholar]
  21. Shimura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Araya T., Tomita M. 1992; Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306 [CrossRef]
    [Google Scholar]
  22. Simpson P. J., Stanton C., Fitzgerald G. F., Ross R. P. 2003; Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. J Bacteriol 185:2571–2581 [CrossRef]
    [Google Scholar]
  23. Ventura M., Elli M., Reniero R., Zink R. 2001; Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol 36:113–121 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02667-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02667-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error