1887

Abstract

Two anaerobic, benzaldehyde-converting bacteria were isolated from an anaerobic upflow anaerobic sludge bed (UASB)-reactor treating potato starch waste water. Strain BOR-Y converted benzaldehyde to benzoate and benzylalcohol in approximately equimolar concentrations. Benzaldehyde conversion did not support growth. Strain BOR-Y was Gram-positive and rod-shaped, and its cells were slightly thickened in the middle. The strain was a mesophilic spore-former that grew between 15 and 40 °C, with optimum growth at 30–37 °C. The optimum pH for growth was pH 7·0. Strain BOR-Y grew on a wide range of carbohydrates and some other carbon sources including yeast extract, cysteine and serine. The G+C content of its DNA was 42 mol%. According to physiological characteristics and 16S rRNA gene sequence analysis, confirmed by DNA–DNA hybridization with its phylogenetic neighbours, strain BOR-Y belongs to a novel genus of cluster XII of the clostridia, namely ; the name is proposed for the type species (type strain BOR-Y=DSM 12858=ATCC BAA-502). Strain BR-10 reduced benzaldehyde to benzylalcohol. This conversion was coupled to growth. In a medium containing yeast extract, the presence of benzaldehyde resulted in the accumulation of more than twofold more cells. Strain BR-10 was a Gram-positive organism that was characterized by oval- or rod-shaped cells with oval ends, which occurred singly, in pairs or sometimes in chains. The strain was moderately thermophilic and grew between 20 and 60 °C, with optimum growth at 45 °C. The optimum pH for growth was between pH 7·0 and 7·5. Strain BR-10 grew on a wide range of carbon sources including carbohydrates, yeast extract, casein and some amino acids. The G+C content of its DNA was 32 mol%. As determined by 16S rRNA gene sequence analysis, strain BR-10 represents a novel species of cluster XIVa of the clostridia; the name is proposed for this novel species (type strain BR-10=DSM 12857=ATCC BAA-501).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02668-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531791.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02668-0&mimeType=html&fmt=ahah

References

  1. Cato E. P., Holdeman L. V., Moore W. E. C. 1979; Proposal of neotype strains for seven non-saccharolytic Bacteroides species. Int J Syst Bacteriol 29:427–434 [CrossRef]
    [Google Scholar]
  2. Cato E. P., Hash D. E., Holdeman L. V., Moore W. E. C. 1982; Electrophoretic study of Clostridium species. J Clin Microbiol 15:688–702
    [Google Scholar]
  3. Chamkha M., Garcia J.-L., Labat M. 2001; Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans , Clostridium celerecrescens and Clostridium xylanolyticum . Int J Syst Evol Microbiol 51:2105–2111 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Shah H. N. 1986; Reclassification of Bacteroides praeacutus Tissier (Holdeman and Moore) in a new genus, Tissierella , as Tissierella praeacuta comb. nov. Int J Syst Bacteriol 36:461–463 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  6. Corry J. E. L. 1978; A review. Possible sources of ethanol ante- and post-mortem: its relationship to the biochemistry and microbiology of decomposition. J Appl Bacteriol 44:1–56 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual Methods for General Bacteriology pp 21–23Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Farrow J. A. E., Lawson P. A., Hippe H., Gauglitz U., Collins M. D. 1995; Phylogenetic evidence that the Gram-negative nonsporulating bacterium Tissierella ( Bacteroides ) praeacuta is a member of the Clostridium subphylum of the Gram-positive bacteria and description of Tissierella creatinini sp. nov. Int J Syst Bacteriol 45:436–440 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Gauglitz U. 1988; Anaerober mikrobieller Abbau von Kreatin, Kreatinin und N-Methylhydantoin . PhD thesis Göttingen University; Göttingen, Germany:
  12. Gogotova G. I., Vainstein M. B. 1983; The sporogenous sulfate reducing bacterium Desulfotomaculum guttoideum sp. nov. Mikrobiologiya 52:789–793 in Russian
    [Google Scholar]
  13. Gößner A., Daniel S. L., Drake H. L. 1994; Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch Microbiol 161:126–131 [CrossRef]
    [Google Scholar]
  14. Green E. M., Kalil M. S., Williams P., Stephens G. M. 1994; Screening for reduction of aldehydes and ketones by solventogenic cultures of the strict anaerobe, Clostridium acetobutylicum . Biotechnol Tech 8:733–738 [CrossRef]
    [Google Scholar]
  15. Harms C., Schleicher A., Collins M. D., Andreesen J. R. 1998; Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism. Int J Syst Bacteriol 48:983–993 [CrossRef]
    [Google Scholar]
  16. Hermann M., Knerr H.-J., Mai N., Groß A., Kaltwasser H. 1992; Creatinine and N -methylhydantoin degradation in two newly isolated Clostridium species. Arch Microbiol 157:395–401 [CrossRef]
    [Google Scholar]
  17. Holdeman L. V., Cato E. P., Moore W. E. editors 1977; Anaerobe Laboratory Manual . , 4th edn. pp 1–156 Blacksburg, VA: Virginia Polytechnic Institute and State University;
  18. Johnson J. L. 1984; Bacterial classification III. Nucleic acids in bacterial classification. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 8–11Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Karnholz A., Küsel K., Gößner A., Schramm A., Drake H. L. 2002; Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68:1005–1009 [CrossRef]
    [Google Scholar]
  21. Krumholz L. R., Bryant M. P. 1985; Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacteriol 35:454–456 [CrossRef]
    [Google Scholar]
  22. Lux M. F., Drake H. L. 1992; Reexamination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum : chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett 95:49–56 [CrossRef]
    [Google Scholar]
  23. Lux M. F., Keith E., Hsu T. D., Drake H. L. 1990; Biotransformations of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol Lett 67:73–78 [CrossRef]
    [Google Scholar]
  24. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP. Nucleic Acids Res 24:82–85 [CrossRef]
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  26. Marmur J., Doty P. 1961; Thermal denaturation of deoxyribonucleic acids. J Mol Biol 3:585–594 [CrossRef]
    [Google Scholar]
  27. McClung L. S., McCoy E. 1957; Genus II Clostridium Prazmovski 1880. In Bergey's Manual of Determinative Bacteriology , 7th edn. pp 634–693Edited by Breed R. S., Murray E. G. D., Smith N. R. Baltimore: Williams & Wilkins;
    [Google Scholar]
  28. Mechichi T., Labat M., Patel B. K. C., Woo T. H. S., Thomas P., Garcia J.-L. 1999; Clostridium methoxybenzovorans sp. nov., a new aromatic o -demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209 [CrossRef]
    [Google Scholar]
  29. Murray W. D., Khan A. W., van den Berg L. 1982; Clostridium saccharolyticum sp. nov., a saccharolytic species from sewage sludge. Int J Syst Bacteriol 32:132–135 [CrossRef]
    [Google Scholar]
  30. Owen R. J., Hill R. L., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  31. Palop M. LL., Valles S., Piñaga F., Flors A. 1989; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71 [CrossRef]
    [Google Scholar]
  32. Parekh M., Drake H. L., Daniel S. L. 1996; Bidirectorial transformation of aromatic aldehydes by Desulfovibrio desulfuricans under nitrate-dissimilating conditions. Lett Appl Microbiol 22:115–120 [CrossRef]
    [Google Scholar]
  33. Parshina S. N., Kleerebezem R., van Kempen E., Nozhevnikova A. N., Lettinga G., Stams A. J. M. 2000; Benzaldehyde conversion by two anaerobic bacteria isolated from an upflow anaerobic sludge bed reactor. Process Biochem 36:423–429 [CrossRef]
    [Google Scholar]
  34. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  35. Rogers G. M., Baecker A. A. W. 1991; Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. Int J Syst Bacteriol 41:140–143 [CrossRef]
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  37. Schnürer A., Schink B., Svensson B. H. 1996; Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152 [CrossRef]
    [Google Scholar]
  38. Sembring T., Winter J. 1990; Demethylation of aromatic compounds by strain B 10 and complete degradation of methoxybenzoate in co-culture with Desulfosarcina strains. Appl Microbiol Biotechnol 33:233–238
    [Google Scholar]
  39. Skinner F. A. 1971; The isolation of soil bacteria. In Isolation of Anaerobes pp 57–78Edited by Shapton D. A., Board R. G. London: Academic Press;
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  41. Suen J. C., Hatheway C. L., Steigerwalt A. G., Brenner D. J. 1988; Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme . Int J Syst Bacteriol 38:375–381 [CrossRef]
    [Google Scholar]
  42. Svetlichny V. A., Sokolova T. G., Gerhardt M., Ringpfeil M., Kostrikina N. A., Zavarzin G. A. 1991; Carboxydothermus hydrogenoformans gen. nov. sp. nov. a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260 [CrossRef]
    [Google Scholar]
  43. Tissier P. H. 1908; Recherches sur la flore intestinale normale des enfants âgés d'un an à cinq ans. Ann Inst Pasteur 22:189–208
    [Google Scholar]
  44. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurement of growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  45. van Gylswyk N. O., van der Toorn J. J. T. K. 1987; Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover. Int J Syst Bacteriol 37:102–105 [CrossRef]
    [Google Scholar]
  46. Walther R., Hippe H., Gottschalk G. 1977; Citrate, a specific substrate for the isolation of Clostridium sphenoides . Appl Environ Microbiol 33:955–962
    [Google Scholar]
  47. Zellner G., Kneifel H., Winter J. 1990; Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. Appl Environ Microbiol 56:2228–2233
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02668-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error