1887

Abstract

A novel mesophilic, sulfur- and thiosulfate-oxidizing bacterium, strain OK10, was isolated from deep-sea sediments at the Hatoma Knoll in the Mid-Okinawa Trough hydrothermal field. Cells of strain OK10 were short rods, each being motile by means of a single polar flagellum. The isolate grew at 10–40 °C (optimum 25 °C) and pH 4·5–9·0 (optimum pH 6·5). It grew chemolithoautotrophically with elemental sulfur, sulfide and thiosulfate as sole electron donors and oxygen as electron acceptor. Molecular hydrogen did not support growth. The G+C content of the genomic DNA of strain OK10 was 35·2 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that the isolate belonged to the -. On the basis of its physiological and molecular characteristics, strain OK10 (=ATCC BAA-671=JCM 11897) represents the sole species of a new genus, , for which the name is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02682-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531801.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02682-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguenes G., Cueff V., Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microb Rev 43:260–296
    [Google Scholar]
  3. Baross J. A. 1995; Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual Thermophiles pp 15–23Edited by Robb F. T., Place A. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Campbell B. J., Jeanthon C., Kostka J. E., Luther G. W. III, Cary S. C. 2001; Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572 [CrossRef]
    [Google Scholar]
  5. Corre E., Reysenbach A.-L., Prieur D. 2001; ε -Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  6. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  7. Inagaki F., Sakihama Y., Inoue A., Kato C., Horikoshi K. 2002; Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4:277–286 [CrossRef]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Kostka J., Nealson K. H. 1998; Isolation, cultivation and characterization of iron- and manganese-reducing bacteria. In Techniques in Microbial Ecology pp 58–78Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Sayler G. New York: Oxford University Press;
    [Google Scholar]
  10. Lane D. J. 1985; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–176Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  11. Longnecker K., Reysenbach A. 2001; Expansion of the geographic distribution of a novel lineage of ε - Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293
    [Google Scholar]
  12. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulfur-reducing ε -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  13. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount. Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  14. Polz M. F., Cavanaugh C. M. 1995; Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92:7232–7236 [CrossRef]
    [Google Scholar]
  15. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  16. Reysenbach A. L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  17. Takai K., Fujiwara Y. 2002; Hydrothermal vents: biodiversity in deep-sea hydrothermal vents. In Encyclopedia of Environmental Microbiology pp 1604–1617Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  18. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y., Horikoshi K. 2002; Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054 [CrossRef]
    [Google Scholar]
  19. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003a; Isolation and phylogenetic diversity of members of previously uncultivated ε - Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  20. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003b; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  22. Timmer-ten Hoor A. 1981; Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans . Antonie van Leeuwenhoek 47:231–243 [CrossRef]
    [Google Scholar]
  23. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02682-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02682-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1801-1805



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error