1887

Abstract

A facultatively psychrophilic bacterium, strain MD17, which hydrolyses lipids at 5 °C, was isolated from the Monbetsu coast of the Okhotsk Sea in Hokkaido, Japan, when ice carried by the cold current came to the area. The isolate is an aerobic, non-motile coccobacillus that reduces nitrate to nitrite and hydrolyses Tweens 20, 40, 60 and 80, but not gelatin, DNA or alginic acid. The isolate grows at 0 °C, but not at temperatures higher than 36 °C; its optimum growth temperature is 25 °C. It grows in the presence of 0–10 % NaCl. Its major isoprenoid quinone is ubiquinone-8 (Q-8) and its DNA G+C content is 46·7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MD17 is closely related to DSM 12194 (99·0 % similarity) and DSM 7229 (98·7 % similarity). DNA–DNA hybridization revealed 45·9 % relatedness between strain MD17 and ATCC 43116 and 33·4 % between strain MD17 and ATCC 700754. Based on physiological and biochemical characteristics, phylogenetic position (as determined by 16S rRNA gene sequence analysis) and DNA–DNA relatedness, it is concluded that the isolate should be designated as a novel species, for which the name sp. nov. is proposed. The type strain is MD17 (=NCIMB 13931=JCM 11840).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02686-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531985.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02686-0&mimeType=html&fmt=ahah

References

  1. Arpigny J. L., Feller G., Gerday C. 1993; Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim Biophys Acta 1171:331–333 [CrossRef]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. editors 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Bowman J. P., Cavanagh J., Austin J. J., Sanderson K. 1996; Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848 [CrossRef]
    [Google Scholar]
  4. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997a; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  5. Bowman J. P., Nichols D. S., McMeekin T. A. 1997b; Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215 [CrossRef]
    [Google Scholar]
  6. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  7. Choo D.-W., Kurihara T., Suzuki T., Soda K., Esaki N. 1998; A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491
    [Google Scholar]
  8. Denner E. B. M., Mark B., Busse H.-J., Turkiewicz M., Lubitz W. 2001; Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Feller G., Thiry M., Arpigny J. L., Gerday C. 1991; Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic Antarctic strain Moraxella TA144. Gene 102:111–115 [CrossRef]
    [Google Scholar]
  11. Juni E. 1991; The genus Psychrobacter . In The Prokaryotes pp 3241–3246Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  12. Kawasaki K., Nogi Y., Hishinuma M., Nodasaka Y., Matsuyama H., Yumoto I. 2002; Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 52:1455–1459 [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Albrecht A., Buczolits S., Busse H.-J. 2002; Psychrobacter faecalis sp. nov., a new species from a bioaerosol originating from pigeon faeces. Syst Appl Microbiol 25:31–36 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Maruyama A., Honda D., Yamamoto H., Kitamura K., Higashihara T. 2000; Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846 [CrossRef]
    [Google Scholar]
  18. Morita R. Y., Albright L. J. 1965; Cell yields of Vibrio marinus , an obligate psychrophile, at low temperature. Can J Microbiol 11:221–227 [CrossRef]
    [Google Scholar]
  19. Rashid N., Shimada Y., Ezaki S., Atomi H., Imanaka T. 2001; Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064–4069 [CrossRef]
    [Google Scholar]
  20. Romanenko L. A., Schumann P., Rohde M., Lysenko A. M., Mikhailov V. V., Stackebrandt E. 2002; Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297 [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  24. Yumoto I., Kawasaki K., Iwata H., Matsuyama H., Okuyama H. 1998; Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 48:1357–1362 [CrossRef]
    [Google Scholar]
  25. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02686-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02686-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

IMAGE

Supplementary material 2

IMAGE

Supplementary material 3

IMAGE

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error