1887

Abstract

During an investigation of bacterial diversity at hydrothermal vents on the Lō‘ihi Seamount, Hawai‘i, a novel bacterium (designated L2-TR) was cultivated, which shares 99·9 % 16S rRNA gene sequence similarity over 1415 nt with an uncultured eubacterium from sediment at a depth of 11 000 m in the Mariana Trench. The nearest cultivated neighbour of L2-TR, however, is KMM 227, with which it shares 98·9 % 16S rRNA sequence similarity. L2-TR differed from KMM 227 in several phenotypic respects, including growth at 46 °C and in medium that contained 20 % (w/v) NaCl. DNA–DNA hybridization data showed that L2-TR did not belong to the species (43·4 % DNA–DNA reassociation). Cells of L2-TR were Gram-negative rods, 0·35 μm wide and 0·7–1·0 μm long, which were occasionally up to 1·8 μm in length. Cells were motile by a single polar or subpolar flagellum. The major fatty acid in L2-TR was iso-C (32·6 %). The DNA G+C content was 47·4 mol%. Phenotypic and genotypic analyses indicated that L2-TR could be assigned to the genus but, based on significant phenotypic and genotypic differences, constituted a novel species within this genus, sp. nov., of which L2-TR (=ATCC BAA-735=DSM 15497) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02701-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531873.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02701-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 1997 Handbook of Microbiological Media , 2nd edn. p. 7Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Brettar I., Christen R., Höfle M. G. 2003; Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 53:407–413 [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Donachie S. P. 1996; A seasonal study of marine bacteria in Admiralty Bay (Antarctica. Proc NIPR Symp Polar Biol 9:111–124
    [Google Scholar]
  7. Donachie S. P., Christenson B. W., Kunkel D. D., Malahoff A., Alam M. 2002; Microbial community in acidic hydrothermal waters of volcanically active White Island. New Zealand. Extremophiles 6:419–425 [CrossRef]
    [Google Scholar]
  8. Emerson D., Moyer C. L. 2002; Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093 [CrossRef]
    [Google Scholar]
  9. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  10. Guezennec J. G., Dussauze J., Bian M., Rocchiccioli F., Ringelberg D., Hedrick D. B., White D. C. 1996; Bacterial community structure in sediments from Guaymas Basin, Gulf of California, as determined by analysis of phospholipid ester-linked fatty acids. J Mar Biotechnol 4:165–175
    [Google Scholar]
  11. Harwood C. S., Jannasch H. W., Canale-Parola E. 1982; Anaerobic spirochete from a deep-sea hydrothermal vent. Appl Environ Microbiol 44:234–237
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Ivanova E. P., Romanenko L. A., Chun J. 7 other authors 2000; Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50:901–907 [CrossRef]
    [Google Scholar]
  14. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  16. Karl D. M., McMurtry G. M., Malahoff A., Garcia M. O. 1988; Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system. Nature 335:532–535 [CrossRef]
    [Google Scholar]
  17. Karl D. M., Brittain A. M., Tilbrook B. D. 1989; Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Res 36:1655–1673 [CrossRef]
    [Google Scholar]
  18. Klein F. W. 1982; Earthquakes at Loihi submarine volcano and the Hawaiian hot spot. J Geophys Res 87:7719–7726 [CrossRef]
    [Google Scholar]
  19. Malahoff A. 1987; Geology of the summit of Loihi submarine volcano. U S Geol Surv Prof Pap 1350:133–144
    [Google Scholar]
  20. Miroschnichenko M. L., Rainey F. A., Rhode M., Bonch-Osmolovskaya E. A. 1999; Hippea maritima gen. nov., sp. nov. a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int J Syst Bacteriol 49:1033–1038 [CrossRef]
    [Google Scholar]
  21. Moyer C. L., Dobbs F. C., Karl D. M. 1994; Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount and Hawaii. Appl Environ Microbiol 60:871–879
    [Google Scholar]
  22. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount and Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  23. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  24. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358
    [Google Scholar]
  25. Palleroni N. J. 1997; Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek 72:3–19 [CrossRef]
    [Google Scholar]
  26. Ruby E. G., Wirsen C. O., Jannasch H. W. 1981; Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–324
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Sasser M. 1997; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids (MIDI. Technical Note 101: Newark, DE: MIDI;
    [Google Scholar]
  29. Sievert S. M., Ziebis W., Kuever J., Sahm K. 2000; Relative abundance of Archaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Microbiology 146:1287–1293
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Pukall R. 1999; Response to Althoff et al . ( Mar Biol 130: 529–536). Deriving taxonomic decisions from 16S rDNA: a case study. Mar Biol 133:159–161 [CrossRef]
    [Google Scholar]
  32. Suzuki M. T., Rappé M. S., Haimberger Z. W., Winfield H., Adair N., Ströbel J., Giovannoni S. J. 1997; Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02701-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02701-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1873 – 1879

Growth of sp. nov. in different NaCl concentrations.

Fatty acid composition of sp. nov. and of type strains of other members of the genus .

[Single PDF](160 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error