1887

Abstract

Two unusual, Gram-negative, catalase- and oxidase-positive rods, designated C2 and C5, were isolated from compost samples. Comparative 16S rRNA gene sequencing studies demonstrated that both isolates were members of the genus and belonged to the group. Strain C2 was most closely related to 1N and R-20821 (97.9 and 97.8 % 16S rRNA gene sequence similarity, respectively). However, phylogenetic analysis based on gene sequences revealed that both isolates could be discriminated from members of the group that exhibited >97 % 16S rRNA gene sequence similarity. The DNA G+C content of strain C2 was 61.5 mol%. The major fatty acids of strain C2 were a summed feature (Cω7 and/or iso-C 2-OH), Cω7/12/9, C and C, which supported the isolates’ affiliation with the genus . Moreover, strain C2 could be distinguished from its closest phylogenetic neighbours of the genus by DNA–DNA hybridization studies and biochemical tests. On the basis of both phenotypic and phylogenetic findings, it is proposed that the isolates be classified as a novel species, with the name sp. nov. The type strain is C2 ( = CECT 7516 = CCUG 59231).

Funding
This study was supported by the:
  • Spanish Ministry of Education and Science (Award CTM-2007-66306-C02-01)
  • Complutense University
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027086-0
2011-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2962.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027086-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  2. Bozal N., Montes M. J., Mercadé E. 2007; Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612 [View Article][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA–DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [View Article][PubMed]
    [Google Scholar]
  5. Escalante A. E., Caballero-Mellado J., Martínez-Aguilar L., Rodríguez-Verdugo A., González-González A., Toribio-Jiménez J., Souza V. 2009; Pseudomonas cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro Cienegas valley in Coahuila, Mexico. Int J Syst Evol Microbiol 59:1416–1420 [View Article][PubMed]
    [Google Scholar]
  6. Euzéby J. P. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  7. Gibello A., Vela A. I., Martín M., Barra-Caracciolo A., Grenni P., Fernández-Garayzábal J. F. 2009; Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005. Int J Syst Evol Microbiol 59:1914–1918 [View Article][PubMed]
    [Google Scholar]
  8. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  9. Hirota K., Yamahira K., Nakajima K., Nodasaka Y., Okuyama H., Yumoto I. 2011; Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. Int J Syst Evol Microbiol 61:1842–1848 [View Article][PubMed]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Jesús Cremades M., Luiza de Souza-Galvão M., García J. M., Menéndez R. 2009; [Respiratory infections research: a perspective from the tuberculosis and respiratory infections area (TIR)]. Arch Bronconeumol 45:Suppl. 111–15 (in Spanish) [PubMed] [CrossRef]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307[PubMed]
    [Google Scholar]
  15. Las Heras A., Domínguez L., López I., Fernández-Garayzábal J. F. 1999; Outbreak of acute ovine mastitis associated with Pseudomonas aeruginosa infection. Vet Rec 145:111–112 [View Article][PubMed]
    [Google Scholar]
  16. Li L.-T., Hong Q., Yan X., Fang G.-H., Ali S. W., Li S.-P. 2009; Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene. Biodegradation 20:769–776 [View Article][PubMed]
    [Google Scholar]
  17. Ma J.-P., Wang Z., Lu P., Wang H.-J., Waseem Ali S., Li S.-P., Huang X. 2009; Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 296:203–209 [View Article][PubMed]
    [Google Scholar]
  18. Manickam N., Ghosh A., Jain R. K., Mayilraj S. 2008; Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst Appl Microbiol 31:101–107 [View Article][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Migula W. 1894; Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238 (in German)
    [Google Scholar]
  21. Mulet M., Lalucat J., García-Valdés E. 2010; DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530[PubMed]
    [Google Scholar]
  22. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358[PubMed]
    [Google Scholar]
  23. Palleroni N. J. 1984; Genus Pseudomonas Migula 1894, 237AL . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Palleroni N. J. 1993; Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie van Leeuwenhoek 64:231–251 [View Article][PubMed]
    [Google Scholar]
  25. Pearson W. R. 1994; Using the fasta program to search protein and DNA sequence databases. Methods Mol Biol 24:307–331[PubMed]
    [Google Scholar]
  26. Poirel L., Lebessi E., Castro M., Fèvre C., Foustoukou M., Nordmann P. 2004; Nosocomial outbreak of extended-spectrum β-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 48:2277–2279 [View Article][PubMed]
    [Google Scholar]
  27. Rasmussen S. W. 2002; SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  30. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  31. Vela A. I., Gutiérrez M. C., Falsen E., Rollán E., Simarro I., García P., Domínguez L., Ventosa A., Fernández-Garayzábal J. F. 2006; Pseudomonas simiae sp. nov., isolated from clinical specimens from monkeys (Callithrix geoffroyi). Int J Syst Evol Microbiol 56:2671–2676 [View Article][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  33. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027086-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027086-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error