1887

Abstract

An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49, was isolated from geothermally heated soil at Hell’s Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49 is the first representative of a new class in the newly described phylum , formerly known as candidate division OP10. Cells of strain T49 stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49 grew at 50–73 °C with an optimum temperature of 68 °C, and at pH 4.7–5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49 was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49 represents a novel bacterial genus and species within the new class classis nov. of the phylum . The type strain of gen. nov., sp. nov. is T49 ( = DSM 23976 = ICMP 18418).

Funding
This study was supported by the:
  • Wairakei Environmental Mitigation Charitable Trust (WEMCT)
  • administered by Contact Energy and the New Zealand Foundation for Research, Science and Technology (Award C05X0801 and C05X0303)
  • Sarah Beanland Memorial Scholarship (GNS Science)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027235-0
2011-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2482.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027235-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  3. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916[PubMed]
    [Google Scholar]
  4. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus, an extreme thermophile. J Bacteriol 104:509–517[PubMed]
    [Google Scholar]
  5. Brofft J. E., McArthur J. V., Shimkets L. J. 2002; Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769 [View Article][PubMed]
    [Google Scholar]
  6. Carreau J. P., Dubacq J. P. 1978; Adaptation of a macro scale method to the micro scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr A 151:384–390 [View Article]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  8. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp. 265–309 Edited by Goodfellow M., O’Donnell G. Chichester: Wiley;
    [Google Scholar]
  9. Cruz-Martínez K., Suttle K. B., Brodie E. L., Power M. E., Andersen G. L., Banfield J. F. 2009; Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744 [View Article][PubMed]
    [Google Scholar]
  10. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. 2006; Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb . Appl Environ Microbiol 72:5069–5072 [View Article][PubMed]
    [Google Scholar]
  11. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R. 1998; Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877[PubMed]
    [Google Scholar]
  12. Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S., Ly B., Saw J. H., Zhou Z. et al. other authors 2007; Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia . Nature 450:879–882 [View Article][PubMed]
    [Google Scholar]
  13. Elshahed M. S., Youssef N. H., Spain A. M., Sheik C., Najar F. Z., Sukharnikov L. O., Roe B. A., Davis J. P., Schloss P. D. et al. other authors 2008; Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol 74:5422–5428 [View Article][PubMed]
    [Google Scholar]
  14. Euzéby J. P. 1997; List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592 [View Article][PubMed]
    [Google Scholar]
  15. Garrity G. M., Holt J. G. 2001a; Phylum BIV. DeinococcusThermus . In Bergey’s Manual of Systematic Bacteriology pp. 395–420 Edited by Boone D. R., Garrity G. M. New York: Springer;
    [Google Scholar]
  16. Garrity G. M., Holt J. G. 2001b; The road map to the Manual. In Bergey’s Manual of Systematic Bacteriology pp. 119–166 Edited by Boone D. R., Garrity G. M. New York: Springer;
    [Google Scholar]
  17. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146 [View Article]
    [Google Scholar]
  18. Huang L.-N., De Wever H., Diels L. 2008; Diverse and distinct bacterial communities induced biofilm fouling in membrane bioreactors operated under different conditions. Environ Sci Technol 42:8360–8366 [View Article][PubMed]
    [Google Scholar]
  19. Huber T., Faulkner G., Hugenholtz P. 2004; Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319 [View Article][PubMed]
    [Google Scholar]
  20. Hugenholtz P., Goebel B. M., Pace N. R. 1998a; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774[PubMed]
    [Google Scholar]
  21. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998b; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376[PubMed]
    [Google Scholar]
  22. Jiao Y., Yoshihara T., Ishikuri S., Uchino H., Ichihara A. 1996; Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 37:1039–1042 [View Article]
    [Google Scholar]
  23. Kaneda T. 1971; Incorporation of branched-chain C6-fatty acid isomers into the related long-chain fatty acids by growing cells of Bacillus subtilis . Biochemistry 10:340–347 [View Article][PubMed]
    [Google Scholar]
  24. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302[PubMed]
    [Google Scholar]
  25. Kanokratana P., Chanapan S., Pootanakit K., Eurwilaichitr L. 2004; Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44:430–444 [View Article][PubMed]
    [Google Scholar]
  26. Kristjánsson J. K., Hjörleifsdóttir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50 [CrossRef]
    [Google Scholar]
  27. Kushida H. 1980; An improved embedding method using ERL 4206 and Quetol 653. J Electron Microsc (Tokyo) 29:193–194
    [Google Scholar]
  28. Lehours A.-C., Evans P., Bardot C., Joblin K., Gérard F. 2007; Phylogenetic diversity of Archaea and Bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019 [View Article][PubMed]
    [Google Scholar]
  29. Lesaulnier C., Papamichail D., McCorkle S., Ollivier B., Skiena S., Taghavi S., Zak D., van der Lelie D. 2008; Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941 [View Article][PubMed]
    [Google Scholar]
  30. Ley R. E., Harris J. K., Wilcox J., Spear J. R., Miller S. R., Bebout B. M., Maresca J. A., Bryant D. A., Sogin M. L., Pace N. R. 2006; Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695 [View Article][PubMed]
    [Google Scholar]
  31. Liles M. R., Manske B. F., Bintrim S. B., Handelsman J., Goodman R. M. 2003; A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69:2684–2691 [View Article][PubMed]
    [Google Scholar]
  32. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar H., Buchner A., Lai T., Steppi S. et al. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  33. Magee C. M., Rodeheaver G., Edgerton M. T., Edlich R. F. 1975; A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 130:341–346 [View Article][PubMed]
    [Google Scholar]
  34. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  35. Mori K., Yamaguchi K., Sakiyama Y., Urabe T., Suzuki K.-I. 2009; Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov.. Int J Syst Evol Microbiol 59:2894–2898 [View Article][PubMed]
    [Google Scholar]
  36. Nogales B., Moore E. R. B., Llobet-Brossa E., Rossello-Mora R., Amann R., Timmis K. N. 2001; Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884 [View Article][PubMed]
    [Google Scholar]
  37. Pace N. R. 2009; Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576 [View Article][PubMed]
    [Google Scholar]
  38. Portillo M. C., Gonzalez J. M. 2009; Members of the candidate division OP10 are spread in a variety of environments. World J Microbiol Biotechnol 25:347–353 [View Article]
    [Google Scholar]
  39. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  40. Roh H., Yu C.-P., Fuller M. E., Chu K.-H. 2009; Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43:2505–2511 [View Article][PubMed]
    [Google Scholar]
  41. Saito T., Ochiai H. 1998; Fatty acid composition of the cellular slime mold Polysphondylium pallidum . Lipids 33:327–332 [View Article][PubMed]
    [Google Scholar]
  42. Soo R. M., Wood S. A., Grzymski J. J., McDonald I. R., Cary S. C. 2009; Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Environ Microbiol 11:715–728 [View Article][PubMed]
    [Google Scholar]
  43. Stamatakis A., Ludwig T., Meier H. 2005; RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463 [View Article][PubMed]
    [Google Scholar]
  44. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F. 2008; Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041 [View Article][PubMed]
    [Google Scholar]
  45. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V. 1995; Cellular fatty acids of Alteromonas species. Syst Appl Microbiol 18:37–43 [CrossRef]
    [Google Scholar]
  46. Tamaki H., Tanaka Y., Matsuzawa H., Muramatsu M., Meng X.-Y., Hanada S., Mor K., Kamagata Y. 2011; Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447 [CrossRef]
    [Google Scholar]
  47. Tindall B. J. 2005; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual Section 4.1.5 Suppl. 1, 2nd edn. Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht: Kluwer;
    [Google Scholar]
  48. Urbach E., Vergin K. L., Young L., Morse A., Larson G. L., Giovannoni S. J. 2001; Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46:557–572 [View Article]
    [Google Scholar]
  49. von Wintzingerode F., Selent B., Hegemann W., Göbel U. B. 1999; Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286[PubMed]
    [Google Scholar]
  50. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  51. Wu X., Xi W., Ye W., Yang H. 2007; Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol Ecol 61:85–96 [View Article][PubMed]
    [Google Scholar]
  52. Wu D., Raymond J., Wu M., Chatterji S., Ren Q., Graham J. E., Bryant D. A., Robb F., Colman A. et al. other authors 2009; Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum . PLoS One 4:e4207 [View Article][PubMed]
    [Google Scholar]
  53. Yamamoto K., Shibahara A., Nakayama T., Kajimoto G. 1991; Determination of double-bond positions in methylene-interrupted dienoic fatty acids by GC-MS as their dimethyl disulfide adducts. Chem Phys Lipids 60:39–50 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027235-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027235-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error