1887

Abstract

Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus but constituted a cluster separate from the type strains of and . The DNA base composition of the isolates was 60·2–60·5 mol% G+C, with a range of 0·3 mol%. The isolates constituted a taxon separate from and on the basis of DNA–DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of and , but the isolates grew on maltose. The major ubiquinone was Q. On the basis of the results obtained, the name sp. nov. is proposed for the isolates. The type strain is isolate AA08 (=BCC 12978=TISTR 1524=NBRC 100057=NRIC 0535), which had a DNA G+C content of 60·3 mol% and was isolated from a heliconia flower (‘paksaasawan’ in Thai; sp.) collected in Bangkok, Thailand.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02734-0
2004-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540313.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02734-0&mimeType=html&fmt=ahah

References

  1. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126 [CrossRef]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Yamamoto N., Ninomiya K., Suzuki S., Yabuuchi E. 1983; Transfer of Peptococcus indolicus , Peptococcus asaccharolyticus , Peptococcus prevotii , and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol 33:683–698 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Katsura K., Kawasaki H., Potacharoen W., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2001; Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria . Int J Syst Evol Microbiol 51:559–563
    [Google Scholar]
  7. Kawasaki H., Hoshino Y., Hirata A., Yamasato K. 1993; Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among photosynthetic purple nonsulfur bacteria. Arch Microbiol 160:358–362
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  9. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2002; Kozakia baliensis gen. nov., sp. nov. a novel acetic acid bacterium in the α-Proteobacteria . Int J Syst Evol Microbiol 52:813–818 [CrossRef]
    [Google Scholar]
  10. Marmur J. 1961; A procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  11. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  12. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  13. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  14. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high-performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  15. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  16. Verlander C. P. 1992; Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques pp  185–201 Edited by Kricka L. J. New York: Academic Press;
    [Google Scholar]
  17. Yamada Y., Aida K., Uemura T. 1969; Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter , especially of the so-called intermediate strains. J Gen Appl Microbiol 15:186–196
    [Google Scholar]
  18. Yamada Y., Hosono R., Lisdiyanti P., Widyastuti Y., Saono S., Uchimura T., Komagata K. 1999; Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter . J Gen Appl Microbiol 45:23–28 [CrossRef]
    [Google Scholar]
  19. Yamada Y., Katsura K., Kawasaki H., Widyastuti Y., Saono S., Seki T., Uchimura T., Komagata K. 2000; Asaia bogorensis gen. nov., sp. nov. an unusual acetic acid bacterium in the α - Proteobacteria . Int J Syst Evol Microbiol 50:823–829 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02734-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02734-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error